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Problem 3 : Spin Problem

(3.a) Derive the Commutation relations

Comment

We basically derive the general angular momentum property [Li ; Lj ] = 2i �i jkLk for the

case of 1
2
spin operators.

Problem (i)

Derive

[�̂x �̂y ] = 2i �̂z (1)

Solution

LHS =[�̂x ; �̂y ]

=�̂x �̂y � �̂y �̂x

=

[
0 1

1 0

][
0 �i

i 0

]
�

[
0 �i

i 0

][
0 1

1 0

]

=

[
i 0

0 �i

]
�

[
�i 0

0 i

]
=

[
2i 0

0 �2i

]

=2i

[
1 0

0 �1

]
= 2i �̂z = RHS

Problem (ii)

Derive (Can get a little tricky)

[�̂z ; �̂x ] = 2i �̂y (2)

Solution

LHS = [�̂z ; �̂x ] = �̂z �̂x � �̂x �̂z =

[
1 0

0 �1

][
0 1

1 0

]
�

[
0 1

1 0

][
1 0

0 �1

]

=

[
0 1

�1 0

]
�

[
0 �1

1 0

]

=

[
0 2

�2 0

]
= 2

[
0 1

�1 0

]
j �

i

i

= 2i

[
0 1

i
i2

i
0

]
= 2i

[
0 1

i
i
i

i 0

]

= 2i

[
0 i

�1

i 0

]
= 2i

[
0 �i

i 0

]
= 2i �̂y

= RHS
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Problem (iii)

Derive

[�̂y �̂z � �̂z �̂y ] = 2i �̂x (3)

Solution

LHS = [�̂y �̂z � �̂z �̂y ]

=

[
0 �i

i 0

][
1 0

0 �1

]
�

[
1 0

0 �1

][
0 �i

i 0

]

=

[
0 i

i 0

]
�

[
0 �i

�i 0

]

=

[
0 2i

2i 0

]
= 2i

[
0 1

1 0

]
= 2i �̂x

�
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(3.b) Eigenvectors and Eigenvalues

Problem

Give the eigenstates of the Hamilton operator Ĥ = ��̂z where � 2 R

Solution

Our Hamilton is de�ned as

Ĥ = ��̂z = �

[
1 0

0 �1

]
=

[
� 0

0 ��

]

Being a diagonal matrix, the eigenvalues are just the diagonal components and the eigen-

vectors are the corresponding column vectors. Let �1; �2 be the eigenvalues for ~v1; ~v2 as

the eigenvectors for Ĥ, then

�1 = +� ; ~v1 =

[
1

0

]

�2 = �� ; ~v2 =

[
0

1

]

Comment

Maybe you have to derive them and not just use this fact about diagonal matrices. Ask

the invigilator to con�rm.

If the Hamiltonian was made out of �̂x or �̂y , then you would have had to compute the

eigenvalues and then go for the eigenvectors.
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(3.c) Spin in arbitrary direction

Comment

This problem tests your fundamental knowledge about measurement in quantum mechan-

ics. It is in the simplest setting : a two state system with spin as your observable.

Problem

[Buildup]

Consider the spin operator in an arbitrary direction ~n = (nx ; ny ; nz) given by

Ŝ~n =
1

2
(nx �̂x + ny �̂y + nz �̂z)

(hbar=1), where ~n is a unit vector.

[Given] Let 	 be the eigenstate of Ĥ with the eigenvalue +�.

[Question] What is the probability for measuring Ŝ~n to have the value 1
2
in the state 	?

Solution

Using the [Question] part of the problem, we can easily construct the probability equation

as follows :

P =
∣∣hn; +jz ; +i∣∣2 (4)

Where,

� jn; +i represents the state satisfying Ŝ~n jn; +i =
1
2
jn; +i

� jz ; +i represents the state satisfying Ĥ jz ; +i = +� jz ; +i.

� From the previous sub-question (3.2) we know that

jz ; +i =

[
1

0

]

Hence, our main goal is to derive an expression for jn; +i. Let us �rst de�ne the unit vector

~n using spherical coordinates

~n =

nxny
nz

 =

sin � cos�sin � sin�

cos �


and

~̂S =

Ŝx

Ŝy

Ŝz

 =
1

2

�̂x

�̂y

�̂z


We also know ,
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Ŝ~n = ~n � ~̂S =

nxny
nz

 �
Ŝx

Ŝy

Ŝz

 =
1

2
(nx �̂x + ny �̂y + nz �̂z)

=
1

2

nx

[
0 1

1 0

]
+ ny

[
0 �i

i 0

]
+ nz

[
1 0

0 �1

]
=

1

2

[
nz nx � i ny

nx + i ny �nz

]

=
1

2

[
cos � sin � cos�� i sin � sin�

sin � cos�+ i sin � sin� � cos �

]

=
1

2

[
cos � sin �(cos�� i sin�)

sin �(cos�+ i sin�) � cos �

]

=
1

2

[
cos � sin � e�i�

sin � e i� � cos �

]
(Euler's formula)

Comment

The phases above, e�i� are pure phases and do not play a physical role in QM. If you

don't know this, go back and try to understand why. Hint : It has something to do

with the probabilistic interpretation of states. Pure phases do not contribute in the Born

interpretation.

Now that we have an expression for Ŝ~n, we need to �nd the state jn; +i such that

Ŝ~n jn; +i = +
1

2
jn; +i (5)

(One can check that the eigenvalues of Ŝ~n are indeed �1
2
)

We can de�ne jn; +i in as a linear combination of the z states in the following way

jn; +i = c1 jz ; +i+ c2 jz ;�i =

[
c1
c2

]

We can rearrange the (5) to get the typical equation we solve for eigenvectors.(
Ŝ~n � Î

1

2

)
jn; +i = 01

2

[
cos � sin � e�i�

sin � e i� � cos �

]
�

1

2

[
1 0

0 1

] jn; +i = 0

1

2

[
cos � � 1 sin � e�i�

sin � e i� � cos � � 1

][
c1
c2

]
= 0
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This equation gives us two equations

1

2
[c1(cos � � 1) + c2(sin � e

�i�)] = 0

1

2
[c1(sin � e

i�)� c2(cos � + 1)] = 0

Solving the �rst one of them gives us

c1(cos � � 1) = �c2(sin � e
�i�)

c2 =
c1(1� cos �)

sin �
e i�

We won't solve the second equation because it gives us exactly the same relation between

c1 and c2 . (You can de�nitely check for yourself!)

We can use some trigonometric identities to simplify the relation to the following form

c2 =

(
e i�

sin �
2

cos �
2

)
c1

We have the jn; +i vector in the z-state basis in the following form

jn; +i =

[
c1
c2

]
=

 c1(
e i�

sin �

2

cos �

2

)
c1

 = c1

 1(
e i�

sin �

2

cos �

2

)
We are almost there, one last step left. Can you guess? . . .We gotta normalize the state.

We start with the normalization condition

hn; +jn; +i = 1

c�1c1 + c�2c2 = 1

j c1 j
2 + j c2 j

2 = 1

j c1 j
2

(
1 +

sin2 �
2

cos2 �
2

)
= 1

j c1 j
2

(
cos2 �

2
+ sin2 �

2

cos2 �
2

)
= 1

j c1 j
2= cos2

�

2

Taking the simplest form for c1 we get

c1 = cos
�

2
; c2 = sin

�

2
e i�

Which FINALLY gives us the jn; +i state as follows

jn; +i = cos
�

2
jz ; +i+ sin

�

2
e i� jz ;�i
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Recalling that jz ; +i =

[
1

0

]
; jz ;�i =

[
0

1

]
we can also write the above equation as

jn; +i =

[
cos �

2

sin �
2
e i�

]
in the z-state basis.

Finally,we are in a state to calculate the probability. Recalling the �rst equation we wrote

in this solution for the probability i.e. eq.(4)

P =
∣∣hn; +jz ; +i∣∣2

=

∣∣∣∣∣∣
[
(cos �

2
)� (sin �

2
e i�)�

][1
0

]∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
[
cos �

2
sin �

2
e�i�

][1
0

]∣∣∣∣∣∣
2

=

∣∣∣∣cos �2 + 0

∣∣∣∣2 = cos2
�

2

Therefore, if you have a state prepared which corresponds to the +1
2
eigenvalue of the Ŝz

operator i.e the jz ; +i state

. . . then . . .

the probability that one can measure 1
2
for the Ŝ~n observable depends on the polar angle � and

the exact probability is given by cos2 �
2

Comment

Check if this makes sense with some obvious examples

� Example 1 : �1 = 0.

For this we have jn; +i =

[
1

0

]
which is the same as being exactly in the state jz ; +i.

The probability is

P�1 = cos2
�1

2
= cos2 0 = 1

which makes perfect sense as you are exactly in the same eigenstate and being at a

polar angle of � = 0 corresponds to being in jz ; +i

� Example 2: �2 = �

For this we have jn; +i =

[
0

1

]
which is the same as being exactly in the state jz ;�i.

The probability is

P�2 = cos2
�2

2
= cos2

�

2
= 0

which again makes perfect sense as being at a polar angle �2 = � corresponds to

being in jz ;�i state.
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(3.d) Time evolution of an operator

Comment

This is how computations in the Heisenberg picture are done. Operators are time de-

pendent and the states are steady, compared to the Schrodinger picture where it is vice

versa.

Problem

Derive the time evolution

�̂x(t) = cos(!t)�̂x � sin(!t)�̂y

(I believe there is typo in the question in the Mock 2017, there is an extra factor of i in

front of the second term in the RHS)

We have ! = 2�
~
which has the dimension of frequency.

Solution

In order to derive the time evolution of an operator of the system, we need to recall what

is the Hamiltonian for this problem

Ĥ = � �̂z = �

[
1 0

0 �1

]
(6)

Let the operator that we want to evolve with respect to time be denoted by Â. Which in

this case is

Â = �̂x

Let the time evolved operator be denoted by Ât .

Using the Heisenberg's picture, the formula that we want to use to get Ât from Ĥ; Â is by

sandwiching the Â between these two operators made from Ĥ

Ât = exp

i

(
Ĥ

~

)
t

 Â exp

�i (Ĥ

~

)
t


Let ~ = 1 and by substituting the appropriate Â; Ĥ; Ât for this problem we get (and I am going

to ignore the hats on the sigmas probably at some point),

�̂x(t) = exp(i(� �̂z)t) �̂x exp(�i(� �̂z)t) (7)

We get the time evolved operator by doing the computation on the RHS in the equation

above. There are two methods to do this :

Method 1

This is the more general method for computing these kinds of equations and works for many

similar computations. (Method 2, might have some limitations)

The goal of this method, is to form a di�erential equation from eq.(7) for which we can

easily guess the solution. (Your Harmonic oscillator bells should start ringing now)

Algorithm for this method :

8
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� The eq.(7) is mainly a function of time. For notational convenience we will rede�ne it as

f (t) = exp(i(� �̂z)t) �̂x exp(�i(� �̂z)t)

Where we can see f (0) = �̂x .

� We have to form a di�erential equation from this, so let us take a derivative w.r.t t

f 0(t) =
d

dt

(
exp(i(� �̂z)t) �̂x exp(�i(� �̂z)t)

)
When you do this di�erentiation, you have to be very careful with the order of the terms

as you are dealing with operators that do not commute. Also, when you use the chain rule,

the outer derivative goes �rst and then goes the inner ones i.e. d�(x(t))
dt

= d�
dx

dx
dt

6= dx
dt

d�
dx

when you are dealing with functions of operators.

Now let us compute this

� First use the product rule to get this form

f 0(t) =
d exp

(
i(��̂z)t

)
dt

�̂x exp
(
�i(��̂z)t

)
+ exp

(
i(��̂z)t

)
�̂x

d exp
(
�i(��̂z)t

)
dt

� Now use the comment about the chain rule to evaluate the derivatives

f 0(t) = exp
(
i(��̂z)t

)︸ ︷︷ ︸
Outer

(i ��̂z)︸ ︷︷ ︸
Inner

�̂x exp
(
�i(��̂z)t

)
+ exp

(
i(��̂z)t

)
�̂x exp

(
�i(��̂z)t

)︸ ︷︷ ︸
Outer

(�i ��̂z)︸ ︷︷ ︸
Inner

Where outer and inner refers to the outer and inner derivatives from the chain rule.

� If you look carefully, in both the derivative expressions, the inner is the operator

and outer is the function of the same operator. Hence, they commute and we can

interchange the inner and outer expressions in both the terms in the above equation.

In this step, we will only interchange the places of the inner and outer expressions

in the second term. And after that, just pull out all the constants in front of each

terms.

f 0(t) = i � e i(��̂z )t(�̂z �̂x)e
�i(��̂z )t � i � e i(��̂z )t(�̂x �̂z)e

�i(��̂z )t

(Take a minute to see where this expression comes from and why were we able to

interchange the inner and outer expressions in the second term on the RHS)

� This expression has a very special form, in order to see that form let us rede�ne some

expressions as follows

k = i �; gp(t) = e i(��̂z )t ; gm(t) = e�i(��̂z )t

Using these we have (we will assume gp(t) and gm(t) are functions of t and will write

them as gp and gm unless we need to explicitly mention otherwise)

f 0(t) = k(gp(�̂z �̂x)gm � gp(�̂x �̂z)gm)

Now, I can pull gp from the left hand side of the bracket and gm from the right hand

side of the bracket. Doing this I get

f 0(t) = k gp(�̂z �̂x � �̂x �̂z)gm

= k gp[�̂z ; �̂x ]gm

= kgp(2i �̂y)gm

= 2ki gp(�̂y)gm; (2ki = 2i2� = �2�)

= �2� gp(�̂y)gm

9
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As a side note we can keep

f 0(0) = �2��̂y

as gp(t = 0) = gm(t = 0) = 1.

� Let us compare f (t); f 0(t) side-by-side to see if we can relate them in some way to form

a di�erential equation.

f (t) = gp�̂xgm; f 0(t) = �2�gp(�̂y)gm

There is no way to relate these two expressions to form a di�erential equation. So, we go

on our hunt to �nd the second derivative.

� Computing the second derivative similar to the �rst one you get to this point

f 00(t) = �2�
d(gp�̂ygm)

dt
= �2�(i �)(gp

[
�̂z ; �̂y

]
gm);

[
�̂z ; �̂y

]
= �2i �̂x

= �2�2i(�2i)(gp �̂xgm)

= 4�2i2(gp �̂xgm)

= �4�2(gp�̂xgm)

(Try to compute this on your own, if not, ask around if someone was able to, if not, then

contact me :P)

� Let us compare all the two derivatives of f (t) with itself side-by-side to see if we can spot

a di�erential equation using these expressions

f (t) = (gp�̂xgm); f 0(t) = �2�(gp�̂ygm); f 00(t) = �4�(gp �̂xgm)

We can see a clear mathematical relation between f (t) and f 00(t),

f 00(t) = �4�2 (gp �̂xgm)︸ ︷︷ ︸
=f (t)

= �4�2f (t)

f 00(t) = �4�2f (t) (z)

f (0) = �̂x ; f 0(0) = �2��̂y (IC)

� We have a second order di�erential equation : eq.(z), and two initial conditions (IC).

The eq (z) is a Harmonic oscillator equation where we can already see that ! = 2� as in

the question.

We make the obvious harmonic oscillator ansatz ,

f (t) = � sin(!t) + � cos(!t)

f 0(t) = !� cos(!t)� !� sin(!t)

Now use the initial conditions to �nd �; �.

f (0) = � = �̂x

f 0(0) = !� = �2��̂y

solving them gives us

� = �
2�

!
�̂y = �

2�

2�
�̂y = ��̂y ; � = �̂x
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� Plugging the �; � into our ansatz and recalling that f (t) = �̂x(t) we get

�̂x(t) = f (t) = ��̂y sin(!t) + �̂x cos(!t)

where ! = 2�

Method 2

To be addded

�
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(3.e) Derive the uncertainty for Ŝx and Ŝy in the 	 state

Problem 3.e

Derive an uncertainty relation between Ŝx and Ŝy for the state 	

Solution

We have the two operators de�ned as (with ~ as it is)

Ŝx =
~

2
�̂x ; Ŝy =

~

2
�̂y

The uncertainty relation is de�ned for any two operators Â; B̂ as follows

�Â �B̂ �
1

2
j
1

i

〈[
Â; B̂

]〉
	

j

Using this for our operators being Â = Ŝx , B̂ = Ŝy and
[
Ŝx ; Ŝy

]
= 2i Ŝz we get (Also,

recall that Ŝ� = ~

2
�̂� where � 2 fx; y ; zg)

�Ŝx�Ŝy �
1

2
j
1

i

〈[
Ŝx ; Ŝy

]〉
	

j=
1

2
j
1

i

〈
2i Ŝz

〉
	
j

One can take constants out of the expectation brackets to get

�Ŝx�Ŝy �
1

2
j
1

i
(2i)

〈
Ŝz

〉
	
j=

1

2
j 2
〈
Ŝz

〉
	
j

Now taking the constants out of the absolute value brackets

�Ŝx�Ŝy �j
〈
Ŝz

〉
	
j

The expectation value of Ŝz in the state 	 =

[
+�

0

]
is the eigenvalue +~

2
(because 	 is

a pure eignvector of Ŝz).

Therefore we get the uncertainty relation as

�Ŝx�Ŝy �
~

2
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(3.f) Time invariance of the Uncertainty principle

Problem 3.f

Is the uncertainty preserved under time evolution. (Explain your answer)

Solution

(We did this exact derivation in one of our lectures and we know that uncertainty is indeed

preserved under time evolution)

There are two ways of looking about this problem :

1. Schrodinger picture (States are time dependent and Operators are static)∣∣	(t)
〉
; Ô

2. Heisenberg picture (States are static and the operators are time dependent)

j	i ; Ô(t)

We will write down the equation which connects both these pictures, where 	(t) = 	t

are the states in the Schrodinger picture and 	 = 	0 are the states in the Heisenberg

picture.

h	t j Ô
2 j	ti
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