Problem 1 : Creation/Annihiliation operators

Given for all parts

- Assume we have an operator â such that $\left[\hat{a}, \hat{a}^{\dagger}\right]=\hat{l}$
- Let $\hat{H}=\hat{a}^{\dagger} \hat{a}+\frac{1}{2} \hat{l}$

Problem (a)

Suppose Ψ_{0} is a state such that $\hat{a} \Psi_{0}=0$. Show how to obtain normalized eigenstates of \hat{H} from this state.
(I will use the BraKet notation for simplicity : $\hat{a}\left|\Psi_{0}\right\rangle$)

Solution

We are given $\hat{a}\left|\Psi_{0}\right\rangle=0$ and we want to find the normalized eigenstates of \hat{H}. Let us start by checking how \hat{H} acts on $\left|\Psi_{0}\right\rangle$

$$
\begin{aligned}
\hat{H}\left|\Psi_{0}\right\rangle & =\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2} \hat{l}\right)\left|\Psi_{0}\right\rangle \\
& =\hat{a}^{\dagger} \underbrace{\hat{a}\left|\Psi_{0}\right\rangle}_{=0}+\frac{1}{2} \hat{l}\left|\Psi_{0}\right\rangle \\
& =\frac{1}{2}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Hence, $\left|\Psi_{0}\right\rangle$ is an eigenstate of \hat{H} with the eigenvalue $\frac{1}{2}$.
Look at the Hamiltonian carefully

$$
\hat{H}=\underbrace{\hat{a}^{\dagger} \hat{a}}_{=\hat{N}}+\frac{1}{2} \hat{l}
$$

The eigenstates of \hat{N} and \hat{H} will be equivalent. Eigenvalues will differ by $\frac{1}{2}$ due to the second term $\frac{1}{2} \hat{l}$. Thus, finding the eigenstates of \hat{H} is equivalent to finding the eigenstates of \hat{N} which is called the Number operator.

Let's assume that $\left|\psi_{n}\right\rangle$ are the eigenstates of the number operator \hat{N} with the eigenvalues λ_{n} (Then, $\lambda_{n}+\frac{1}{2}$ would be the eigenvalue for the \hat{H} with the same eigenstate $\left.\left|\psi_{n}\right\rangle\right)$,

$$
\hat{N}\left|\psi_{n}\right\rangle=\lambda_{n}\left|\psi_{n}\right\rangle \quad, \quad \hat{H}\left|\psi_{n}\right\rangle=\left(\lambda_{n}+\frac{1}{2}\right)\left|\psi_{n}\right\rangle
$$

Now, we will do some magic using the \hat{N} along with $\hat{a}^{\dagger}, \hat{a}$ operators. The magic is due to the following commutation relations which we can use later to prove some powerful statements.

- Commutation relation between \hat{N} and \hat{a}

$$
[\hat{N}, \hat{a}]=\left[\hat{a}^{\dagger} \hat{a}, \hat{a}\right]=\left[\hat{a}, \hat{a}^{\dagger}\right] \hat{a}+\hat{a}^{\dagger} \underbrace{[\hat{a}, \hat{a}]}_{=0}=\left[\hat{a}, \hat{a}^{\dagger}\right] \hat{a}=-\hat{l} \hat{a}=-\hat{a}
$$

- Commutation relation between \hat{N} and \hat{a}^{\dagger}

$$
\left[\hat{N}, \hat{a}^{\dagger}\right]=\left[\hat{a}^{\dagger} \hat{a}, \hat{a}^{\dagger}\right]=\underbrace{\left[\hat{a}^{\dagger}, \hat{a}^{\dagger}\right]}_{=0} \text { a }+\hat{a}^{\dagger}\left[\hat{a}, \hat{a}^{\dagger}\right]=\hat{a}^{\dagger}\left[\hat{a}, \hat{a}^{\dagger}\right]=\hat{a}^{\dagger} \hat{l}=\hat{l} \hat{a}^{\dagger}=\hat{a}^{\dagger}
$$

$$
[\hat{N}, \hat{a}]=-\hat{a} \quad \text { and } \quad\left[\hat{N}, \hat{a}^{\dagger}\right]=\hat{a}^{\dagger}
$$

We know that $\left|\psi_{n}\right\rangle$ are the eigenstates of the operator \hat{N}. We want to check two things,

1. The state $\hat{a}^{\dagger}\left|\psi_{n}\right\rangle$ is also an eigenstate of \hat{N} with the eigenvalue $\left(\lambda_{n}+1\right)$

$$
\begin{aligned}
\hat{N}\left(\hat{a}^{\dagger}\left|\psi_{n}\right\rangle\right) & =\left(\hat{N} \hat{a}^{\dagger}\right)\left|\psi_{n}\right\rangle=\left(\hat{a}^{\dagger} \hat{N}+\hat{a}^{\dagger}\right)\left|\psi_{n}\right\rangle=\left(\hat{a}^{\dagger} \hat{N}\left|\psi_{n}\right\rangle+\hat{a}^{\dagger}\left|\psi_{n}\right\rangle\right) \\
& =\left(\lambda_{n} \hat{a}^{\dagger}\left|\psi_{n}\right\rangle+\hat{a}^{\dagger}\left|\psi_{n}\right\rangle\right)=\left(\lambda_{n}+1\right) \hat{a}^{\dagger}\left|\psi_{n}\right\rangle
\end{aligned}
$$

Hence proved that $\hat{a}^{\dagger}\left|\psi_{n}\right\rangle$ is also an eigenstate of \hat{N} with an eigenvalue $\lambda_{n}+1$. (This is where \hat{a}^{\dagger} gets the name creation operator)
2. The state $\hat{a}\left|\psi_{n}\right\rangle$ is also an eigenstate of \hat{N} with the eigenvalue $\lambda_{n}-1$

$$
\begin{aligned}
\hat{N}\left(\hat{a}\left|\psi_{n}\right\rangle\right) & =(\hat{N} \hat{a})\left|\psi_{n}\right\rangle=(\hat{a} \hat{N}-\hat{a})\left|\psi_{n}\right\rangle=\left(\hat{a} \hat{N}\left|\psi_{n}\right\rangle-\hat{a}\left|\psi_{n}\right\rangle\right) \\
& =\left(\lambda_{n} \hat{a}\left|\psi_{n}\right\rangle-\hat{a}\left|\psi_{n}\right\rangle\right)=\left(\lambda_{n}-1\right) \hat{a}\left|\psi_{n}\right\rangle
\end{aligned}
$$

Hence proved that $\hat{a}\left|\psi_{n}\right\rangle$ is an eigenstate of \hat{N} with an eigenvalue $\lambda_{n}-1$. (This where \hat{a} gets the name destruction/annihiliation operator)

$$
\hat{N}\left(\hat{a}^{\dagger}\left|\psi_{n}\right\rangle\right)=\left(\lambda_{n}+1\right)\left|\psi_{n+1}\right\rangle, \quad \hat{N}\left(\hat{a}\left|\psi_{n}\right\rangle\right)=\left(\lambda_{n}-1\right)\left|\psi_{n-1}\right\rangle,
$$

Using the two results from above, we can make the following conclusions,

1. $\hat{N}\left(\hat{a}^{\dagger}\left|\psi_{n}\right\rangle\right)=\left(\lambda_{n}+1\right)\left|\psi_{n}\right\rangle$ implies

$$
\begin{aligned}
\hat{a}^{\dagger}\left|\psi_{n}\right\rangle & \propto\left|\psi_{n+1}\right\rangle \\
& =c_{+}\left|\psi_{n+1}\right\rangle
\end{aligned}
$$

(not ' $=\left|\psi_{n+1}\right\rangle^{\prime}$ because $\hat{a}^{\dagger}\left|\psi_{n}\right\rangle$ need not be normalized)
2. $\hat{N}\left(\hat{a}\left|\psi_{n}\right\rangle\right)=\left(\lambda_{n}-1\right)\left|\psi_{n}\right\rangle$ implies that

$$
\begin{aligned}
\hat{a}\left|\psi_{n}\right\rangle & \propto\left|\psi_{n-1}\right\rangle \\
& =c_{-}\left|\psi_{n-1}\right\rangle
\end{aligned}
$$

(not ' $=\left|\psi_{n-1}\right\rangle^{\prime}$ because $\hat{a}\left|\psi_{n}\right\rangle$ need not be normalized)

$$
\hat{a}^{\dagger}\left|\psi_{n}\right\rangle=c_{+}\left|\psi_{n+1}\right\rangle, \quad \hat{a}\left|\psi_{n}\right\rangle=c_{-}\left|\psi_{n-1}\right\rangle
$$

Now, we will use the normalization condition to find the proportionality constant for the two equations above
1.

$$
\begin{aligned}
&\left\langle\hat{a}^{\dagger} \psi_{n} \mid \hat{a}^{\dagger} \psi_{n}\right\rangle=\left\langle\psi_{n} \mid \hat{a} \hat{a}^{\dagger} \psi_{n}\right\rangle \\
&=\left\langle\psi_{n} \mid\left(\hat{a}^{\dagger} \hat{a}+\hat{l}\right) \psi_{n}\right\rangle \\
&=\left\langle\psi_{n} \mid(\hat{N}+\hat{l}) \psi_{n}\right\rangle \\
&=\left\langle\psi_{n} \mid\left(\lambda_{n}+1\right) \psi_{n}\right\rangle \\
&=\left(\lambda_{n}+1\right) \underbrace{\left\langle\psi_{n} \mid \psi_{n}\right\rangle}_{=1} \\
&\langle\underbrace{c_{+} c_{+}^{*}}_{\left\|c_{+}\right\|^{2}} \underbrace{\left\langle\hat{a}^{\dagger} \psi_{n} \mid \hat{a}^{\dagger} \psi_{n}\right\rangle}_{=1}\rangle=\left(\lambda_{n}+1\right) \\
&\left\|c_{+}\right\|=\sqrt{\lambda_{n}+1}
\end{aligned}
$$

2. Similarly,

$$
\begin{aligned}
\left\langle\hat{a} \psi_{n} \mid \hat{a} \psi_{n}\right\rangle & =\left\langle\psi_{n} \mid \hat{a}^{\dagger} \hat{a} \psi_{n}\right\rangle \\
& =\left\langle\psi_{n} \mid \hat{N} \psi_{n}\right\rangle \\
\underbrace{c_{-} c_{-}^{*}}_{\left\|c_{-}\right\|^{2}} \underbrace{\left\langle\psi_{n-1} \mid \psi_{n-1}\right\rangle}_{=1} & =\lambda_{n} \underbrace{\left\langle\psi_{n} \mid \psi_{n}\right\rangle}_{=1}
\end{aligned}
$$

$$
\left\|c_{-}\right\|=\sqrt{\lambda_{n}}
$$

Therefore, we have the following two crucial results

$$
\hat{a}^{\dagger}\left|\psi_{n}\right\rangle=\sqrt{\lambda_{n}+1}\left|\psi_{n+1}\right\rangle, \quad \hat{a}\left|\psi_{n}\right\rangle=\sqrt{\lambda_{n}}\left|\psi_{n-1}\right\rangle
$$

Which can also be rearranged as follows

$$
\left|\psi_{n+1}\right\rangle=\frac{\hat{a}^{\dagger}\left|\psi_{n}\right\rangle}{\sqrt{\lambda_{n}+1}}, \quad\left|\psi_{n-1}\right\rangle=\frac{\hat{a}\left|\psi_{n}\right\rangle}{\sqrt{\lambda_{n}}}
$$

We can go a step ahead and act with \hat{a}^{\dagger} on $\left|\psi_{n-1}\right\rangle$ s

$$
\begin{aligned}
\hat{a}^{\dagger}\left|\psi_{n-1}\right\rangle & =\frac{\hat{a}^{\dagger}\left(\hat{a}\left|\psi_{n}\right\rangle\right)}{\sqrt{\lambda_{n}}} \\
& =\frac{\hat{N}\left|\psi_{n}\right\rangle}{\sqrt{\lambda_{n}}}=\frac{\lambda_{n}}{\sqrt{\lambda_{n}}}\left|\psi_{n}\right\rangle=\sqrt{\lambda_{n}}\left|\psi_{n}\right\rangle
\end{aligned}
$$

Which can be rearranged as

$$
\left|\psi_{n}\right\rangle=\frac{\hat{a}^{\dagger}\left|\psi_{n-1}\right\rangle}{\sqrt{\lambda_{n}}}
$$

We will use the last formula in the previous box to substitute $\left|\psi_{n}\right\rangle$ in the formula for $\left|\psi_{n+1}\right\rangle$ (2nd line in the previous box)

$$
\left|\psi_{n+1}\right\rangle=\frac{\hat{a}^{\dagger}\left|\psi_{n}\right\rangle}{\sqrt{\lambda_{n}+1}}=\frac{\hat{a}^{\dagger}}{\sqrt{\lambda_{n}+1}} \cdot \frac{\hat{a}^{\dagger}\left|\psi_{n-1}\right\rangle}{\sqrt{\lambda_{n}}}=\ldots=\frac{\left(\hat{a}^{\dagger}\right)^{n+1}\left|\psi_{0}\right\rangle}{\sqrt{\left(\lambda_{n}+1\right)!}}
$$

Going from $n+1 \rightarrow k$, we also go from $\lambda_{n}+1 \rightarrow \lambda_{k}$ we can write

$$
\left|\psi_{k}\right\rangle=\frac{\left(\hat{a}^{\dagger}\right)^{k}\left|\psi_{0}\right\rangle}{\sqrt{\left(\lambda_{k}\right)!}}
$$

(Where we can replace k by a n wlog)
This means that, if we know $\left|\psi_{0}\right\rangle$ then you can find any $\left|\psi_{n}\right\rangle$.
Let's calculate the lowest possible eigenstate $\left|\psi_{0}\right\rangle$

$$
\begin{aligned}
\hat{a}\left|\psi_{0}\right\rangle & =0 \\
(\hat{x}+i \hat{p})\left|\psi_{0}\right\rangle & =0 \\
\left(\hat{x}\left|\psi_{0}\right\rangle+\frac{i \mathrm{~d}\left|\psi_{0}\right\rangle}{i}\right) & =0 \\
\frac{\mathrm{~d} x}{\frac{\mathrm{~d}\left|\psi_{0}\right\rangle}{\left|\psi_{0}\right\rangle}} & =-x \mathrm{~d} x
\end{aligned}
$$

Integrate both sides

$$
\begin{array}{r}
\ln \left|\psi_{0}\right\rangle=-\frac{x^{2}}{2}+\mathcal{N} \\
\left|\psi_{0}\right\rangle=N \exp \left(-\frac{x^{2}}{2}\right)
\end{array}
$$

Normalize this to get $N=\frac{1}{(\pi)^{\frac{1}{4}}}$
Therefore,

$$
\left|\psi_{0}\right\rangle=\frac{1}{(\pi)^{\frac{1}{4}}} e^{-\frac{x^{2}}{2}}
$$

Comment

A quick check that the expectation values of this number operator are positive,

$$
\begin{aligned}
\langle\hat{N}\rangle_{\left|\phi_{n}\right\rangle} & =\left\langle\phi_{n}\right| \hat{N}\left|\phi_{n}\right\rangle=\alpha_{n}\left\langle\phi_{n} \mid \phi_{n}\right\rangle \\
& =\left\langle\phi_{n}\right| \hat{a}^{\dagger} \hat{a}\left|\phi_{n}\right\rangle
\end{aligned}
$$

We know that

$$
\text { if we define } \quad \hat{a}\left|\phi_{n}\right\rangle=\left|\gamma_{n}\right\rangle \quad \text { then } \quad\left\langle\phi_{n}\right| \hat{a}^{\dagger}=\left\langle\gamma_{n}\right|
$$

Therefore from this equality,

$$
\left\langle\phi_{n}\right| \hat{a}^{\dagger} \hat{a}\left|\phi_{n}\right\rangle=\alpha_{n}\left\langle\phi_{n} \mid \phi_{n}\right\rangle
$$

We can change the LHS using the definition right above and get,

$$
\left\langle\gamma_{n} \mid \gamma_{n}\right\rangle=\alpha_{n}\left\langle\phi_{n} \mid \phi_{n}\right\rangle
$$

By definition,

$$
\left\langle\gamma_{n} \mid \gamma_{n}\right\rangle \geq 0 \quad \text { and } \quad\left\langle\phi_{n} \mid \phi_{n}\right\rangle \geq 0
$$

which implies

$$
\alpha_{n} \geq 0
$$

