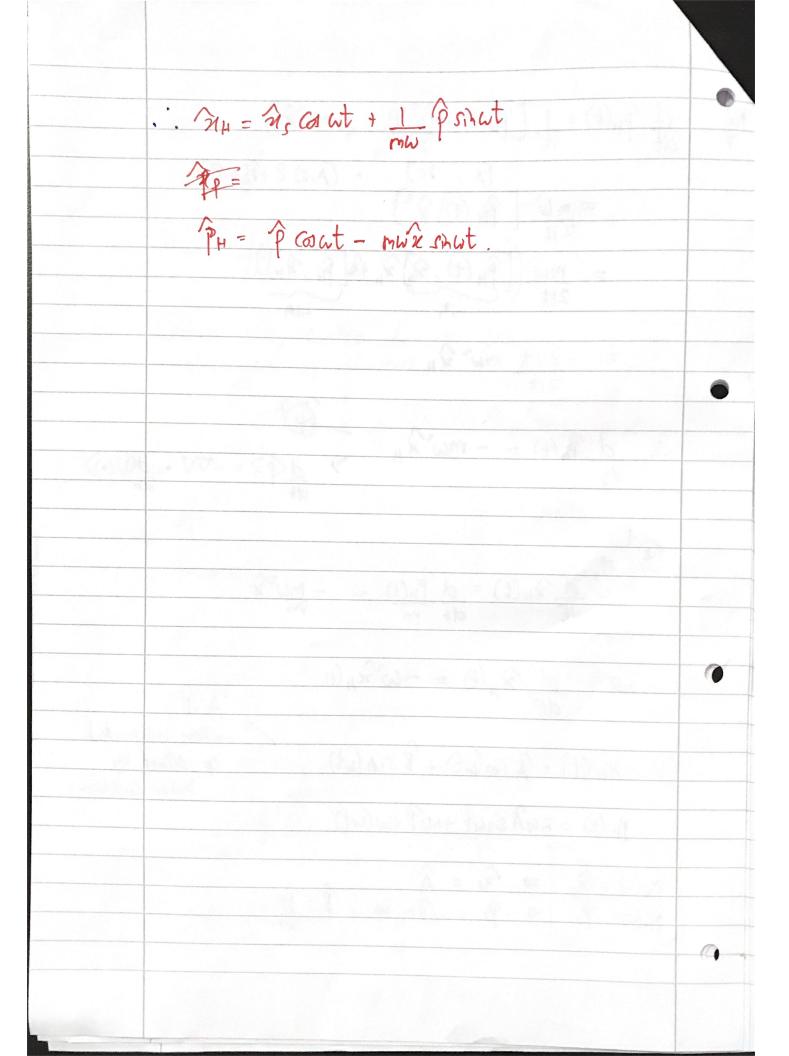


For all
$$p_{\mu}(t) = \frac{1}{it} \left[\hat{p}_{\mu}(t), \frac{\hat{p}_{\nu}(t)}{2m} + \frac{1}{2} m \omega \hat{x}^{2} \right]$$

$$= \frac{m \omega}{2it} \left[\hat{p}_{\mu}(t), \hat{x}^{2} \right] - \left[\hat{p}_{\mu}(t), \hat{x}^{2} \right]$$

$$= \frac{m \omega}{2it} \left[\hat{p}_{\mu}(t), \hat{x}^{2} \right] + \frac{1}{2} m \omega \hat{x}^{2}$$

$$= \frac{m \omega}{2it} \left[\hat{p}_{\mu}(t), \hat{x}^{2} \right] + \frac{1}{2} m \omega \hat{x}^{2}$$


$$= \frac{-2it}{2it} m \omega^{2} \hat{x}^{2}$$

$$= \frac{-2it}{2it} m \omega^{2} \hat{x}^{2}$$

$$= \frac{d}{2it} \hat{p}_{\mu}(t) = -m \omega^{2} \hat{x}^{2}$$

$$= \frac{d}{dt} \hat{x}^{2} + \frac{1}{2} m \omega^{2} \hat{x}^{2} + \frac{1}{2} m \omega^{2} \hat{x}^{2}$$

$$= \frac{d}{dt} \hat{x}^{2} + \frac{1}{2} m \omega^{2} \hat{x}^{2} + \frac{1}{2} m \omega^{$$

L.	Creation & Annihilation uperator.
<i>⊕</i>	What are the Heisenberg operator Corresponding to Simple harmonic Oscillator creation a annihilation operator.
	$\hat{\alpha}_s \Rightarrow \hat{\alpha}_h(t)$ $\hat{\alpha}_s^{\dagger} \Rightarrow \hat{\alpha}_h^{\dagger}(t)$
	S.H.O Hamiltonian -> Time independent
	=> We can use $\widehat{A}_{H}(t) = U^{\dagger}(t,0) \widehat{A}_{J} \widehat{U}(t,0)$
	= etht As etht
	$\hat{H} = \pm \omega \left(\hat{\alpha}^{\dagger} \hat{\alpha} + \frac{1}{2} \right)$
	Additive constant has no effect on the commutation.
	How to endiate and?
	$a_{\mu}(t) = e^{\frac{i}{\hbar}\hat{N}t} \hat{a}_{e}e^{\frac{i}{\hbar}\hat{V}t} = e^{\frac{i}{\hbar}\hat{Q}t} \hat{a}_{e}e^{\frac{i}{\hbar}\hat{Q}t}$
	dan(1) = wijd eighth [Na] eighth
	d ah(1) = wijh eix Ntu [N, a] eix Ntu at iwat [N, a] eix Nt = wi e [N, a] e = -wi e iwat ar e-iwat.
	$\frac{\partial}{\partial t} \hat{a}_{\mu}(t) = -\hat{a}_{\mu}(t) i \omega$
	a(t:0)=a gr: a _{1.1} (t)=ae
	BRUNNEN ILL at eich.