GR in a

Rohan Kulkarni

Literatu

What is GR? Have I had a small taste of it

Breaking GR into

Crash course Geodesic

GR in a nutshell A quick summary of the framework

Rohan Kulkarni

April 16, 2021

Contents

GR in a

Rohan Kulkarni

Literatu

What is GR? Have I had a small taste of it before?

Breaking GR into two part

Crash course Geodesic equation 1 Literature

2 What is GR? Have I had a small taste of it before?

3 Breaking GR into two parts

4 Crash course Geodesic equation

Introductory textbooks

GR in a

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it

before? Breaking GR into

Crash course Geodesic Relativity, Gravitation and Cosmology by Lambourne

- Super easy to read. Easiest text I've come across for GR
- A first course in General relativity by *Bernard Schutz**
 - Used by Prof. Amendola. Standard text used for an advanced undergrad course in GR
- General relativity An introduction for Physicists by Hobson**
 - One of my favorites. Clean, upto the point and gets the job done precisely
- Gravity by *Hartle**
 - Another one of my favorites. A lot of text to read but worth it. More time consuming than Hobson in my opinion.
- Einstein's General relativity by D'Inverno *

Advanced textbooks

GR in a

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it

Breaking GR into two parts

Crash course Geodesic There are many more advanced books out there. Interested people can have a chat with me after the course is done.

- General relativity by Wald***
 - My first exposure to the subject (Wouldn't wish that even on my worst enemy)
 - Why use it as a first book then? My BSc thesis was based on topics from Part II of the book.
 - But, the holy grail/bible of modern GR. Everything you need to know about modern GR is there.
 - Do not pick it up if you have no previous exposure to the subject.
- Gravitation by Misner, Throne, Wheeler **
 - Written by three experts who are responsible for a ridiculous amount of development in the subject.
 - The telephone book of GR. Over 1200 pages.
 - Do not try to read it linearly at-least as of now. It's a reference book when you really want to get an intuition on the topic.

One equation to rule them all

GR in a

Rohan Kulkarni

Literati

What is GR? Have I had a small taste of it before?

Breaking GR into two part

Crash course Geodesic equation ■ GR - "Relativistic field theory of Gravity"

"Spacetime tells matter how to move; matter tells spacetime how to curve" -John Wheeler

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Telling matter how to move Telling spacetime how to curve

- Everything on the LHS has to do with $g_{\mu\nu}$ (metric tensor).
 - You use $g_{\mu\nu}$ to compute $R_{\mu\nu\lambda\kappa}$ (Riemann tensor). Using $R_{\mu\nu\lambda\kappa}$ one can easily (with tedious algebra) compute $R_{\mu\nu}$ (Ricci tensor) and R (Ricci scalar).
- lacksquare Everything on the RHS has to do with $T_{\mu
 u}$

$R_{\mu u} - rac{1}{2} R \, g_{\mu u} = \kappa \, T_{\mu u}$

General relativity

- lacksquare $g_{\mu
 u}$ is anything that solves the EE for a particular $T_{\mu
 u}$

Special relativity

$$g_{\mu
u} = \eta_{\mu
u} = (-1, +1, +1, +1)$$
 for $T_{\mu
u} = 0$

$$\frac{d^2x^{\mu}}{d\tau^2} + \frac{\Gamma^{\mu}}{\tau^{\mu}} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} = 0, \text{ as }$$

$$\Gamma^{\mu}_{\nu\sigma} = 0$$

■ Mainly because $\frac{dx^{\mu}}{d\tau} = c$

Conclusion

Special relativity is just really a "special" case of GR. $(\nabla_{\mu} \to \partial_{\mu}, g_{\mu\nu} \to \eta_{\mu\nu})$

A common tale of two equations describing classical theories

GR in a

Rohan Kulkarni

Literatı

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic ■ Main two objects of classical field theories

- Fields
- Particles (*Trajectory*)
- Electromagnetism
 - The fields themselves are governed by *Maxwell's equations* (Can get \vec{E} , \vec{B} for given $A^{\mu} = \left(\phi, \vec{A}\right)$ or for given $J^{\mu} = \left(\rho, \vec{J}\right)$)
 - The motion of a test particle is dictated by *Lorentz force* : $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$
- GR (Just like above, we will have two equations)
 - The fields themselves are governed by *Einstein's equations* (Calculate $g_{\mu\nu}$ for the given $T^{\mu\nu}$)
 - The motion of a test particle are governed by the geodesic equation $\left(\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0\right)$: Dot is differentiation with respect to proper time
 - The RHS of this equation is zero for free-fall objects in gravity.
 - What would happen if we have free fall gravity + electrodynamics force?

$$\blacksquare \ \ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = \frac{q}{m_{\boldsymbol{0}}}F^{\mu}_{\nu}\dot{x}^{\nu}$$

Recall

- Principle of least action $\rightarrow S\left[x^{i}\left(t\right)\right] = \int_{t_{1}}^{t_{2}} dt \ L\left(x^{i}\left(t\right), \dot{x}^{i}\left(t\right)\right)$ (Remember : A functional)
- If you see how the action changes for a *small perturbation* in the path $\rightarrow x^{i}(t) \rightarrow x^{i}(t) + \delta x^{i}(t)$ Keep the end points fixed $\rightarrow \delta x^{i}(t_{1}) = \delta x^{i}(t_{2}) = 0$
- lacktriangle Now if you compute $\delta S o$ You will get the **Euler Lagrange** equations

$$\frac{\partial L}{\partial x^i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^i} \right)$$

- If we use this in *flat space for a particle* with just kinetic energy i.e. \rightarrow $L = \frac{1}{2}m\left(\dot{x^i}\right)^2$
- We get
 - (Newton's law) $m\ddot{x}^i = 0$
 - Which makes sense because $\rightarrow F = m\ddot{x}^i = \left(-\frac{\partial V}{\partial x^i} = -\nabla V\right)$
- You could solve the Newton's law for a particle to get its *trajectory* (this is all happening in Flat Euclidean 3 space (\mathbb{R}^3))
- Our immediate goal is to get the write down the Lagrangian and action → for particles in curved space (Eventually spacetime)

Non-relativistic motion of a particle in curved space

GR in a

Rohan Kulkarni

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation ■ Lagrangian of a free particle in flat space

$$L = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right)$$

Also can be rewritten using

$$(g_{\mathsf{flat}})_{ij} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$
 $L = rac{1}{2}m \; (g_{\mathsf{flat}})_{ij} \, \dot{x}^i \dot{x}^j$

- Euler Lagrange equation gives us $\ddot{x}^i = 0$
- For any arbitrary $g_{ij}(\vec{x})$,

$$L = \frac{1}{2} m g_{ij} (\vec{x}) \dot{x}^i \dot{x}^j$$

lacktriangle We will use Euler-Lagrange equations on it ightarrow Geodesic equation

Calculating the geodesic equation for non-relativistic particle in curved space

GR in a nutshell

Rohan Kulkarni

.

What is GR? Have I had a small taste of it

Breaking GR into two part

Crash course Geodesic equation $L = \frac{1}{2} m g_{ij} \left(\vec{x} \right) \dot{x}^i \dot{x}^j$

■ Recall E-L equation

$$\frac{\partial L}{\partial x^i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^i} \right)$$

LHS

$$\frac{\partial L}{\partial x^{i}} = \frac{m}{2} \frac{\partial g_{jk}}{\partial x^{i}} \dot{x}^{j} \dot{x}^{k}$$

RHS

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}^{i}}\right) = \frac{d}{dt}\left(mg_{ik}\left(x^{j}\right)\dot{x}^{k}\right) = m\frac{\partial g_{ik}}{\partial x^{j}}\dot{x}^{i}\dot{x}^{k} + mg_{ik}\ddot{x}^{k}$$

LHS=RHS

$$g_{ik}\ddot{x}^{k} + \left(\frac{\partial g_{ik}}{\partial x^{j}} - \frac{1}{2}\frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} = 0$$

$$g_{ik}\ddot{x}^{k} + \frac{1}{2}\left(2\frac{\partial g_{ik}}{\partial x^{j}} - \frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} = 0$$

$$g_{ik}\ddot{x}^{k} + \frac{1}{2}\left(\underbrace{\frac{\partial g_{ik}}{\partial x^{j}} + \frac{\partial g_{ij}}{\partial x^{k}}}_{\mathbf{Symmetry with }j \leftrightharpoons k} - \frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} = 0$$

The geodesic equation in curved space

GR in a nutshell

Rohan Kulkarni

Literati

What is GR? Have I had a small taste of it

Breaking GR into two part

Crash course Geodesic equation Inverse metric

$$g^{ij}g_{jk} = \delta^i_k$$

Matrix multiplication

Recall the equation we derived in the slide before

$$g_{ik}\ddot{x}^k + \frac{1}{2}\left(\frac{\partial g_{ik}}{\partial x^j} + \frac{\partial g_{ij}}{\partial x^k} - \frac{\partial g_{jk}}{\partial x^i}\right)\dot{x}^j\dot{x}^k = 0$$

now,

$$g_{ik}\ddot{x}^k + \underbrace{\frac{1}{2}g^{il}\left(\frac{\partial g_{lk}}{\partial x^j} + \frac{\partial g_{lj}}{\partial x^k} - \frac{\partial g_{jk}}{\partial x^l}\right)}_{\Gamma^i_{jk} = \Gamma^i_{kj}} \dot{x}^j \dot{x}^k = 0$$

giving us

$$\ddot{x}^i + \Gamma^i_{jk} \dot{x}^j \dot{x}^k = 0$$

This is known as the geodesic equation and its solutions are known as geodesics.