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1 Literature
Introductory textbooks

e Relativity, Gravitation and Cosmology by Lambourne

— Super easy to read. Easiest text I've come across for GR

A first course in General relativity by Bernard Schutz*

— Used by Prof. Amendola. Standard text used for an advanced undergrad course in GR

General relativity - An introduction for Physicists by Hobson**

— One of my favorites. Clean, upto the point and gets the job done precisely

Gravity by Hartle*

— Another one of my favorites. A lot of text to read but worth it. More time consuming than Hobson in
my opinion.

Einstein’s General relativity by D’Inverno *

Advanced textbooks
There are many more advanced books out there. Interested people can have a chat with me after the course is
done.

e General relativity by Wald***

— My first exposure to the subject (Wouldn’t wish that even on my worst enemy)
* - Why use it as a first book then? My BSc thesis was based on topics from Part IT of the book.
— But, the holy grail/bible of modern GR. Everything you need to know about modern GR is there.

— Do not pick it up if you have no previous exposure to the subject.



e Gravitation by Misner, Throne, Wheeler **

— Written by three experts who are responsible for a ridiculous amount of development in the subject.
— The telephone book of GR. Over 1200 pages.

— Do not try to read it linearly at-least as of now. It’s a reference book when you really want to get an
intuition on the topic.

2 What is GR? Have I had a small taste of it before?

One equation to rule them all

o GR - “Relativistic field theory of Gravity”

o “Spacetime tells matter how to move; matter tells spacetime how to curve” - John Wheeler
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Telling matter how to move Telling spacetime how to curve

— Everything on the LHS has to do with g, (metric tensor).

* You use g, to compute R, . (Riemann tensor). Using R, . one can easily (with tedious algebra)
compute R, (Ricci tensor) and R (Ricci scalar).

— Everything on the RHS has to do with T},,
GR vs SR
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General relativity
® g, is anything that solves the EE for a particular 7},
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Special relativity
® g =N = (—1,+1,+1,+1) for T, =0
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e Mainly because %7~ = ¢
Conclusion

Special relativity is just really a “special” case of GR. (V, — Oy, 9y — M)

3 Breaking GR into two parts
A common tale of two equations describing classical theories

e Main two objects of classical field theories

— Fields
— Particles ( Trajectory)

e FElectromagnetism

— The fields themselves are governed by Mazwell’s equations (Can get E, B for given AH = (gb, /_f) or
for given J* = (p7f> )



— The motion of a test particle is dictated by Lorentz force :F = q (E_" + 7 x E)

GR (Just like above, we will have two equations)

— The fields themselves are governed by Einstein’s equations (Calculate g, for the given T")

— The motion of a test particle are governed by the geodesic equation (fc'“ + I, 2"l = O) : Dot is
differentiation with respect to proper time

— The RHS of this equation is zero for free-fall objects in gravity.

* What would happen if we have free fall gravity + electrodynamics force?
* @+ T aval = miOFﬂ:ic”

4 Crash course Geodesic equation

A Geodesic equation you have seen before

Recall

Principle of least action — S [27 (t)] = fttf dt L (z* (t), 4" (¢)) (Remember : A functional)

If you see how the action changes for a small perturbation in the path — % (t) — 2 (t) + d2° () Keep the
end points fixed — 6z (t1) = 2% (t2) =0

Now if you compute 65 — You will get the Fuler Lagrange equations
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If we use this in flat space for a particle with just kinetic energy i.e. — L = 5m (ml)

We get

— (Newton’s law) mi® = 0
— Which makes sense because — F = mi’ = (—g;/ =-VV)

You could solve the Newton’s law for a particle to get its trajectory (this is all happening in Flat Euclidean 3
space (R?))

Our immediate goal is to get the write down the Lagrangian and action — for particles in curved space
(Eventually spacetime)

Non-relativistic motion of a particle in curved space

Lagrangian of a free particle in flat space
1
L= gm(i"z—l—gf—l—éz)

— Also can be rewritten using
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— Euler Lagrange equation gives us i’ = 0
For any arbitrary g;; (Z),
1 .
L= §m gij (f) At

— We will use Euler-Lagrange equations on it — Geodesic equation



Calculating the geodesic equation for non-relativistic particle in curved space
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e Recall E-L equation
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Symmetry with j5Sk

The geodesic equation in curved space

e Inverse metric
gz] gjk — 5]26
——

Matrix multiplication

e Recall the equation we derived in the slide before

Ogik | 09ij  OGik \ .j.k _
gzkl" + = (BxJ Dk oz ¥ =0

— now,
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— giving us
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e This is known as the geodesic equation and its solutions are known as geodesics



