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1 Literature

Introductory textbooks

� Relativity, Gravitation and Cosmology by Lambourne

� Super easy to read. Easiest text I've come across for GR

� A �rst course in General relativity by Bernard Schutz*

� Used by Prof. Amendola. Standard text used for an advanced undergrad course in GR

� General relativity - An introduction for Physicists by Hobson**

� One of my favorites. Clean, upto the point and gets the job done precisely

� Gravity by Hartle*

� Another one of my favorites. A lot of text to read but worth it. More time consuming than Hobson in
my opinion.

� Einstein's General relativity by D'Inverno *

Advanced textbooks

There are many more advanced books out there. Interested people can have a chat with me after the course is
done.

� General relativity by Wald***

� My �rst exposure to the subject (Wouldn't wish that even on my worst enemy)

* - Why use it as a �rst book then? My BSc thesis was based on topics from Part II of the book.

� But, the holy grail/bible of modern GR. Everything you need to know about modern GR is there.

� Do not pick it up if you have no previous exposure to the subject.
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� Gravitation by Misner, Throne, Wheeler **

� Written by three experts who are responsible for a ridiculous amount of development in the subject.

� The telephone book of GR. Over 1200 pages.

� Do not try to read it linearly at-least as of now. It's a reference book when you really want to get an
intuition on the topic.

2 What is GR? Have I had a small taste of it before?

One equation to rule them all

� GR - �Relativistic �eld theory of Gravity�

� �Spacetime tells matter how to move; matter tells spacetime how to curve� - John Wheeler

Rµν −
1

2
Rgµν︸ ︷︷ ︸

Telling matter how to move

=
8πG

c4
Tµν︸ ︷︷ ︸

Telling spacetime how to curve

� Everything on the LHS has to do with gµν (metric tensor).

* You use gµν to compute Rµνλκ (Riemann tensor). Using Rµνλκ one can easily (with tedious algebra)
compute Rµν(Ricci tensor) and R (Ricci scalar).

� Everything on the RHS has to do with Tµν

GR vs SR

Rµν −
1

2
Rgµν = κTµν

General relativity

� gµν is anything that solves the EE for a particular Tµν

�
d2xµ

dτ2 + Γµνσ
dxν

dτ
dxσ

dτ = 0

Special relativity

� gµν = ηµν = (−1,+1,+1,+1) for Tµν = 0

�
d2xµ

dτ2 +������
Γµνσ

dxν

dτ
dxσ

dτ = 0, as Γµνσ = 0

� Mainly because dxµ

dτ = c

Conclusion

Special relativity is just really a �special� case of GR. (∇µ → ∂µ, gµν → ηµν)

3 Breaking GR into two parts

A common tale of two equations describing classical theories

� Main two objects of classical �eld theories

� Fields

� Particles (Trajectory)

� Electromagnetism

� The �elds themselves are governed by Maxwell's equations (Can get ~E, ~B for given Aµ =
(
φ, ~A

)
or

for given Jµ =
(
ρ, ~J

)
)
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� The motion of a test particle is dictated by Lorentz force :~F = q
(
~E + ~v × ~B

)
� GR (Just like above, we will have two equations)

� The �elds themselves are governed by Einstein's equations (Calculate gµν for the given Tµν)

� The motion of a test particle are governed by the geodesic equation
(
ẍµ + Γµνρẋ

ν ẋρ = 0
)
: Dot is

di�erentiation with respect to proper time

� The RHS of this equation is zero for free-fall objects in gravity.

* What would happen if we have free fall gravity + electrodynamics force?

* ẍµ + Γµνρẋ
ν ẋρ = q

m0
Fµν ẋ

ν

4 Crash course Geodesic equation

A Geodesic equation you have seen before

Recall

� Principle of least action → S
[
xi (t)

]
=
∫ t2
t1
dt L

(
xi (t) , ẋi (t)

)
(Remember : A functional)

� If you see how the action changes for a small perturbation in the path → xi (t) → xi (t) + δxi (t) Keep the
end points �xed → δxi (t1) = δxi (t2) = 0

� Now if you compute δS → You will get the Euler Lagrange equations

∂L

∂xi
=

d

dt

(
∂L

∂ẋi

)

� If we use this in �at space for a particle with just kinetic energy i.e. → L = 1
2m
(
ẋi
)2

� We get

� (Newton's law) mẍi = 0

� Which makes sense because → F = mẍi =
(
− ∂V
∂xi = −∇V

)
� You could solve the Newton's law for a particle to get its trajectory (this is all happening in Flat Euclidean 3
space

(
R3
)
)

� Our immediate goal is to get the write down the Lagrangian and action → for particles in curved space

(Eventually spacetime)

Non-relativistic motion of a particle in curved space

� Lagrangian of a free particle in �at space

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
� Also can be rewritten using

(g�at)ij =

1 0 0
0 1 0
0 0 1


L =

1

2
m (g�at)ij ẋ

iẋj

� Euler Lagrange equation gives us ẍi = 0

� For any arbitrary gij (~x),

L =
1

2
m gij (~x) ẋiẋj

� We will use Euler-Lagrange equations on it → Geodesic equation
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Calculating the geodesic equation for non-relativistic particle in curved space

L =
1

2
m gij (~x) ẋiẋj

� Recall E-L equation
∂L

∂xi
=

d

dt

(
∂L

∂ẋi

)
� LHS

∂L

∂xi
=
m

2

∂gjk
∂xi

ẋj ẋk

� RHS
d

dt

(
∂L

∂ẋi

)
=

d

dt

(
mgik

(
xj
)
ẋk
)

= m
∂gik
∂xj

ẋj ẋk +mgikẍ
k

� LHS=RHS

gikẍ
k +

(
∂gik
∂xj

− 1

2

∂gjk
∂xi

)
ẋj ẋk = 0

gikẍ
k +

1

2

(
2
∂gik
∂xj

− ∂gjk
∂xi

)
ẋj ẋk = 0

gikẍ
k +

1

2

 ∂gik
∂xj

+
∂gij
∂xk︸ ︷︷ ︸

Symmetry with j�k

−∂gjk
∂xi

 ẋj ẋk = 0

The geodesic equation in curved space

� Inverse metric
gijgjk︸ ︷︷ ︸

Matrix multiplication

= δik

� Recall the equation we derived in the slide before

gikẍ
k +

1

2

(
∂gik
∂xj

+
∂gij
∂xk

− ∂gjk
∂xi

)
ẋj ẋk = 0

� now,

gikẍ
k +

1

2
gil
(
∂glk
∂xj

+
∂glj
∂xk

− ∂gjk
∂xl

)
︸ ︷︷ ︸

Γijk=Γikj

ẋj ẋk = 0

� giving us
ẍi + Γijkẋ

j ẋk = 0

� This is known as the geodesic equation and its solutions are known as geodesics.
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