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m But, the holy grail/bible of modern GR. Everything you need to know about
modern GR is there.

m Do not pick it up if you have no previous exposure to the subject.

m Gravitation by Misner, Throne, Wheeler **

m Written by three experts who are responsible for a ridiculous amount of
development in the subject.

m The telephone book of GR. Over 1200 pages.

m Do not try to read it linearly at-least as of now. It's a reference book when you
really want to get an intuition on the topic.
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Special relativity is just really a “special” case of GR. (V — Ou, 8uv — Muv)
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A Geodesic equation you have seen before

Recall

Principle of least action — S [x/ (t)] = fttlz dt L (x'(t),x'(t)) (Remember : A
functional)

If you see how the action changes for a small perturbation in the path —
x'(t) = x' (t) + 0x' (t) ) _

Keep the end points fixed — §x' (t1) = dx' (t2) =0

Now if you compute §S — You will get the Euler Lagrange equations
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Ox dt \ 9%/
If we use this in flat space for a particle with just kinetic energy i.e. —
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We get
m (Newton's law) mx’ =0
m Which makes sense because — F = mi' = (— g:’ = —VV)

You could solve the Newton's law for a particle to get its trajectory (this is all
happening in Flat Euclidean 3 space (R3))

Our immediate goal is to get the write down the Lagrangian and action — for
particles in curved space
(Eventually spacetime)
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m Lagrangian of a free particle in flat space (

L:%m(x2+y'2+z'2)
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Non-relativistic motion of a particle in curved space

K: (A.n,Ab/'A7> Z(/\’\ /A1,A7>

m Lagrangian of a free particle in flat space = A\-
1 2 2 2
L= Em (x +y 4z )

m Also can be rewritten using

1 0 O
(gﬂat)ij =(0 1 0
0o 0 1

1 i
L= Em (gﬂat)ij X%



Non-relativistic motion of a particle in curved space

GR in a

nutshell
m Lagrangian of a free particle in flat space
1 52 -2 52
L= Eirn (x +y 4z )
m Also can be rewritten using
1 0 O
(gﬂat)ij =(0 1 0
0O 0 1
1 i
L= Em (gﬂat)ij X%
Crash )
Z‘:‘:j:sic m Euler Lagrange equation gives us X' =0

equation
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Non-relativistic motion of a particle in curved space

m Lagrangian of a free particle in flat space

L:%m(x2+y'2+z'2)

m Also can be rewritten using

1 0 O
(gﬂat)ij =(0 1 0
0o 0 1

1 i
L= Em (gﬂat)ij X%

m Euler Lagrange equation gives us X' = 0

m For any arbitrary gj (X),

L=2mgj(x) X'
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Non-relativistic motion of a particle in curved space

m Lagrangian of a free particle in flat space
_1l o 2
L= 2 m (x +y 4z )

m Also can be rewritten using
1 0 O
(gflat)ij =0 1 (]:-'

1 i
L= Em (gﬂat)ij X%

m Euler Lagrange equation gives us X' = 0
m For any arbitrary gj (X),

L=2mgj(x) X'

m We will use Euler-Lagrange equations on it — Geodesic equation



Calculating the geodesic equation for non-relativistic particle in

curved space

GR in a
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L= 5M &i (X)x'x!
m Recall E-L equation
oL d ( oL )
oxi  dt \9xi
Crash

course
Geodesic
equation



Calculating the geodesic equation for non-relativistic particle in

curved space

GR in a
nutshell 1 .
L= 5M &i (X)x'x!
m Recall E-L equation
oL d (0L
oxi  dt \9xi
m LHS
oL mogjk .j.«
ax 2 Oxi
Crash
Geodesic

equation



Calculating the geodesic equation for non-relativistic particle in

curved space

GRin a
nutshell 1 o
L= Em gij (X)x'%
m Recall E-L equation
oL d (oL
oxi  dt \9xi
m LHS
oL mogjk .j.«
Ox 2 Oxi
= RHS d oL d 1)
_ g ) AN 8ik .j .k ok
s (8)2") =% (mg,k (x’) X ) =mo XX 4 mgyx
Crash
Geodesic

equation



Calculating the geodesic equation for non-relativistic particle in

curved space

GR in a

nutshell 1 .
p— . va o! v
Roban L=5meg;(x)xx
Kulkarni
m Recall E-L equation
oL d (oL
oxi  dt \9xi
m LHS
O _ m O s
ox! 2 Ox!
= RHS d /oL d 9,
_ g ) ANIATE 8ik .j.k ok
s (8)2") =% (mg,k (x’) X ) =mo XX 4 mgyx
m LHS=RHS
Crash ag 1 ag
course ok ik _ 108k ik _ g
S g+ (axf 2 axr') x
1 g og; i
ok 8ik 8jk Jok
; 2= = )¥%"=0
gikx + 2 ( OxJ 3x’> x
1 ogi ogij og; ;
ok < 8ik 8ij _ 1473 o ko 0
gix" + 2 OxJ * Oxk oxi x
e

Symmetry with j<k
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The geodesic equation in curved space

m Inverse metric

gigj
——

Matrix multiplication




The geodesic equation in curved space

GR in a
nutshell
m Inverse metric . )
8”8k =0
——
Matrix multiplication
m Recall the equation we derived in the slide before
.. 1 /0g; ogi  Ogi \ .:.
IS i e L g'f( _ GBIk 3ixk =0
2\ ox Ox ox!
Crash
course
Geodesic

equation



The geodesic equation in curved space

GR in a

nutshell
m Inverse metric . )
g’ gjk =0
——
Matrix multiplication
m Recall the equation we derived in the slide before
.. 1 /0g; ogi  Ogi \ .:.
guik 4 = (28K T80 T8k sigk — ¢
2\ 0x  Oxk  Oxi
= now,
. 1, (0gk , Og  Ogik\ .j.
k il ] ) k
ik X = — + = - =) =0
X+ 2% (axl Oxk ox!
Crash
Geodesic =Tl

equation



The geodesic equation in curved space
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R = Inverse metric
Kulkarni i i

g7 8jk = 6k

——

Matrix multiplication
m Recall the equation we derived in the slide before
.. 1 /0g; ogi  Ogi \ .:.
g+ (8, OB 08 e
2\ ox Ox ox!
= now,
1 gk gy Ogjk j
ok il li ) ook
KX + = — + = - =) =0
&ik 2% (8XJ Oxk  Ox!
Crash
course i i
Geodesic Ti="ki
equation .
H giving us

#+ Tzt =0



The geodesic equation in curved space

GR in a
nutshell
R = Inverse metric
Kulkarni i i

g7 8jk = 6k

——

Matrix multiplication
m Recall the equation we derived in the slide before
.. 1 /0g; ogi  Ogi \ .:.
g+ (8, OB 08 e
2\ ox Ox ox!
= now,
1 ;[ Ogk gy Ogjk j
ok il li ) ook
KX + = — + = - =) =0
&ik 2% (8XJ Oxk  Ox!
Crash
course i i
Geodesic Ti="ki
equation .
H giving us

#+ Tzt =0

m This is known as the geodesic equation and its solutions are known as

geodesics.



