GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

GR in a nutshell A quick summary of the framework

Rohan Kulkarni

April 16, 2021

Contents

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

1 Literature

2 What is GR? Have I had a small taste of it before?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

3 Breaking GR into two parts

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

Relativity, Gravitation and Cosmology by Lambourne

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- Relativity, Gravitation and Cosmology by Lambourne
 - Super easy to read. Easiest text I've come across for GR

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- Relativity, Gravitation and Cosmology by Lambourne
 - Super easy to read. Easiest text I've come across for GR

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A first course in General relativity by Bernard Schutz*

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- Relativity, Gravitation and Cosmology by Lambourne
 - Super easy to read. Easiest text I've come across for GR
- A first course in General relativity by Bernard Schutz*
 - Used by Prof. Amendola. Standard text used for an advanced undergrad course in GR

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- Relativity, Gravitation and Cosmology by Lambourne
 Super easy to read. Easiest text I've come across for GR
- A first course in General relativity by Bernard Schutz* $S_{\mathcal{K}}^{\star} \to G_{\mathcal{K}}^{\star}$
 - Used by Prof. Amendola. Standard text used for an advanced undergrad course in GR
 GR
 SR
 SR
- General relativity An introduction for Physicists by Hobson**

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- Relativity, Gravitation and Cosmology by Lambourne
 - Super easy to read. Easiest text I've come across for GR
 - A first course in General relativity by Bernard Schutz*
 - \blacksquare Used by Prof. Amendola. Standard text used for an advanced undergrad course in GR

- General relativity An introduction for Physicists by Hobson**
 - One of my favorites. Clean, upto the point and gets the job done precisely

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- Relativity, Gravitation and Cosmology by Lambourne
 - Super easy to read. Easiest text I've come across for GR
 - A first course in General relativity by Bernard Schutz*
 - \blacksquare Used by Prof. Amendola. Standard text used for an advanced undergrad course in GR

- General relativity An introduction for Physicists by Hobson**
 - One of my favorites. Clean, upto the point and gets the job done precisely
- Gravity by Hartle*

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- Relativity, Gravitation and Cosmology by Lambourne
 - Super easy to read. Easiest text I've come across for GR
 - A first course in General relativity by Bernard Schutz*
 - \blacksquare Used by Prof. Amendola. Standard text used for an advanced undergrad course in GR

- General relativity An introduction for Physicists by Hobson**
 - One of my favorites. Clean, upto the point and gets the job done precisely
- Gravity by Hartle*
 - Another one of my favorites. A lot of text to read but worth it. More time consuming than Hobson in my opinion.

GR in a nutshell

Rohan Kulkarni

Literature

had a before?

Geodesic

- Relativity, Gravitation and Cosmology by Lambourne
 - Super easy to read. Easiest text I've come across for GR
 - A first course in General relativity by Bernard Schutz*
 - Used by Prof. Amendola. Standard text used for an advanced undergrad course in GR

- General relativity An introduction for Physicists by Hobson**
 - One of my favorites. Clean, upto the point and gets the job done precisely
- Gravity by Hartle*
 - Another one of my favorites. A lot of text to read but worth it. More time consuming than Hobson in my opinion. K-calcula (Cha.f.
- Einstein's General relativity by D'Inverno *

Pavid Tong's notes.

GR in a nutshell

Kulkarni

Literature

There are many more advanced books out there. Interested people can have a chat with me after the course is done. Singularity thing

General relativity by Wald***

BH Mechanic. Global startu JUP.

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation There are many more advanced books out there. Interested people can have a chat with me after the course is done.

- General relativity by Wald***
 - My first exposure to the subject (Wouldn't wish that even on my worst enemy)

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation There are many more advanced books out there. Interested people can have a chat with me after the course is done.

- General relativity by Wald***
 - My first exposure to the subject (Wouldn't wish that even on my worst enemy)
 - Why use it as a first book then? My BSc thesis was based on topics from Part II of the book.

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation There are many more advanced books out there. Interested people can have a chat with me after the course is done.

- General relativity by Wald***
 - My first exposure to the subject (Wouldn't wish that even on my worst enemy)
 - Why use it as a first book then? My BSc thesis was based on topics from Part II of the book.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

But, the holy grail/bible of modern GR. Everything you need to know about modern GR is there.

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation There are many more advanced books out there. Interested people can have a chat with me after the course is done.

- General relativity by Wald***
 - My first exposure to the subject (Wouldn't wish that even on my worst enemy)
 - Why use it as a first book then? My BSc thesis was based on topics from Part II of the book.

- But, the holy grail/bible of modern GR. Everything you need to know about modern GR is there.
- Do not pick it up if you have no previous exposure to the subject.

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation There are many more advanced books out there. Interested people can have a chat with me after the course is done.

- General relativity by Wald***
 - My first exposure to the subject (Wouldn't wish that even on my worst enemy)
 - Why use it as a first book then? My BSc thesis was based on topics from Part II of the book.

- But, the holy grail/bible of modern GR. Everything you need to know about modern GR is there.
- Do not pick it up if you have no previous exposure to the subject.
- Gravitation by Misner, Throne, Wheeler **

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation There are many more advanced books out there. Interested people can have a chat with me after the course is done.

- General relativity by Wald***
 - My first exposure to the subject (Wouldn't wish that even on my worst enemy)
 - Why use it as a first book then? My BSc thesis was based on topics from Part II of the book.

- But, the holy grail/bible of modern GR. Everything you need to know about modern GR is there.
- Do not pick it up if you have no previous exposure to the subject.
- Gravitation by Misner, Throne, Wheeler **
 - Written by three experts who are responsible for a ridiculous amount of development in the subject.

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation There are many more advanced books out there. Interested people can have a chat with me after the course is done.

- General relativity by Wald***
 - My first exposure to the subject (Wouldn't wish that even on my worst enemy)
 - Why use it as a first book then? My BSc thesis was based on topics from Part II of the book.

- But, the holy grail/bible of modern GR. Everything you need to know about modern GR is there.
- Do not pick it up if you have no previous exposure to the subject.
- Gravitation by Misner, Throne, Wheeler **
 - Written by three experts who are responsible for a ridiculous amount of development in the subject.
 - The telephone book of GR. Over 1200 pages.

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation There are many more advanced books out there. Interested people can have a chat with me after the course is done.

- General relativity by Wald***
 - My first exposure to the subject (Wouldn't wish that even on my worst enemy)
 - Why use it as a first book then? My BSc thesis was based on topics from Part II of the book.
 - But, the holy grail/bible of modern GR. Everything you need to know about modern GR is there.
 - Do not pick it up if you have no previous exposure to the subject.
- Gravitation by Misner, Throne, Wheeler **
 - Written by three experts who are responsible for a ridiculous amount of development in the subject.
 - The telephone book of GR. Over 1200 pages.
 - Do not try to read it linearly at-least as of now. It's a reference book when you really want to get an intuition on the topic.

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

GR - "Relativistic field theory of Gravity"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- GR "Relativistic field theory of Gravity"
- "Spacetime tells matter how to move; matter tells spacetime how to curve" -John Wheeler $\mu ctric + ensor$ $1 = \frac{8\pi G}{2}$

=

$$\underbrace{R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}}_{2}$$

Telling matter how to move

Telling spacetime how to curve

イロト 不得下 イヨト イヨト

э

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- GR "Relativistic field theory of Gravity"
- "Spacetime tells matter how to move; matter tells spacetime how to curve" John Wheeler

Telling matter how to move

Telling spacetime how to curve

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• Everything on the LHS has to do with $g_{\mu\nu}$ (metric tensor).

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

- GR "Relativistic field theory of Gravity"
- "Spacetime tells matter how to move; matter tells spacetime how to curve" John Wheeler

Telling matter how to move

Telling spacetime how to curve

- Everything on the LHS has to do with $g_{\mu\nu}$ (metric tensor).
 - You use $g_{\mu\nu}$ to compute $R_{\mu\nu\lambda\kappa}$ (Riemann tensor). Using $R_{\mu\nu\lambda\kappa}$ one can easily (with tedious algebra) compute $R_{\mu\nu}$ (Ricci tensor) and R (Ricci scalar).

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- GR "Relativistic field theory of Gravity"
- "Spacetime tells matter how to move; matter tells spacetime how to curve" -John Wheeler

Telling matter how to move

Telling spacetime how to curve

- Everything on the LHS has to do with $g_{\mu\nu}$ (metric tensor).
 - You use $g_{\mu\nu}$ to compute $R_{\mu\nu\lambda\kappa}$ (Riemann tensor). Using $R_{\mu\nu\lambda\kappa}$ one can easily (with tedious algebra) compute $R_{\mu\nu}$ (Ricci tensor) and R (Ricci scalar).
- Everything on the RHS has to do with $T_{\mu\nu}$

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$R_{\mu\nu} - \frac{1}{2} R \, g_{\mu\nu} = \kappa T_{\mu\nu}$

General relativity

Special relativity

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$$R_{\mu\nu} - \frac{1}{2} R \, g_{\mu\nu} = \kappa T_{\mu\nu}$$

General relativity

Special relativity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $g_{\mu\nu}$ is anything that solves the EE for a particular $T_{\mu\nu}$

General relativity

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$$R_{\mu\nu} - \frac{1}{2} R \, g_{\mu\nu} = \kappa T_{\mu\nu}$$

Special relativity

- $g_{\mu\nu}$ is anything that solves the EE for a particular $T_{\mu\nu}$
- $g_{\mu\nu} = \eta_{\mu\nu} = (-1, +1, +1, +1)$ for $T_{\mu\nu} = 0$

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$$R_{\mu\nu} - \frac{1}{2} R \, g_{\mu\nu} = \kappa T_{\mu\nu}$$

General relativity

• $g_{\mu\nu}$ is anything that solves the EE for a particular $T_{\mu\nu}$

$$\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}{}_{\nu\sigma} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} = 0$$

Special relativity

• $g_{\mu\nu} = \eta_{\mu\nu} = (-1, +1, +1, +1)$ for $T_{\mu\nu} = 0$

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$$R_{\mu\nu} - \frac{1}{2} R \, g_{\mu\nu} = \kappa T_{\mu\nu}$$

General relativity

■ g_{µν} is anything that solves the EE for a particular T_{µν}

Special relativity

 $\begin{array}{l} \bullet \ g_{\mu\nu} = \eta_{\mu\nu} = (-1, +1, +1, +1) \ \text{for} \\ T_{\mu\nu} = 0 \\ \bullet \ \frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\ \nu\sigma} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} = 0, \ \text{as} \\ \Gamma^{\mu}_{\ \nu\sigma} = 0 \end{array}$

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$$R_{\mu\nu} - \frac{1}{2} R \, g_{\mu\nu} = \kappa T_{\mu\nu}$$

General relativity

 g_{μν} is anything that solves the EE for a particular T_{μν}

$$\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}{}_{\nu\sigma} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} = 0$$

Special relativity

• $g_{\mu\nu} = \eta_{\mu\nu} = (-1, +1, +1, +1)$ for $T_{\mu\nu} = 0$

 $\frac{d^2 x^{\mu}}{d\tau^2} + \frac{\Gamma^{\mu}}{\tau} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} = 0, \text{ as } \\ \Gamma^{\mu}_{\nu\sigma} = 0$

• Mainly because
$$\frac{dx^{\mu}}{d\tau} = c$$

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$R_{\mu\nu}-\frac{1}{2}R\,g_{\mu\nu}=\kappa T_{\mu\nu}$

General relativity

 g_{μν} is anything that solves the EE for a particular T_{μν}

Special relativity

 $\begin{array}{l} g_{\mu\nu} = \eta_{\mu\nu} = (-1, +1, +1, +1) \text{ for } \\ T_{\mu\nu} = 0 \end{array} \\ \hline \frac{d^2 x^{\mu}}{d\tau^2} + \frac{\Gamma^{\mu}}{\mu\sigma} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} = 0, \text{ as } \\ \Gamma^{\mu}_{\ \nu\sigma} = 0 \end{array} \\ \hline \begin{array}{l} \text{Mainly because } \frac{dx^{\mu}}{d\tau} = c \end{array} \end{array}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Conclusion

Special relativity is just really a "special" case of GR. $(\nabla_{\mu} \rightarrow \partial_{\mu}, g_{\mu\nu} \rightarrow \eta_{\mu\nu})$

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

Fields

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

- Fields
- Particles (Trajectory)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

- Fields
- Particles (Trajectory)
- Electromagnetism

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

- Fields
- Particles (Trajectory)

Electromagnetism

The fields themselves are governed by *Maxwell's equations* (Can get \vec{E}, \vec{B} for given $A^{\mu} = (\phi, \vec{A})$ or for given $J^{\mu} = (\rho, \vec{J})$)

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it

Breaking GR into two parts

Crash course Geodesic equation Main two objects of classical field theories

- Fields
- Particles (Trajectory)

Electromagnetism

The fields themselves are governed by *Maxwell's equations* (Can get \vec{E}, \vec{B} for given $A^{\mu} = (\phi, \vec{A})$ or for given $J^{\mu} = (\rho, \vec{J})$)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

The motion of a test particle is dictated by Lorentz force : $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

- Fields
- Particles (Trajectory)

Electromagnetism

The fields themselves are governed by *Maxwell's equations* (Can get \vec{E}, \vec{B} for given $A^{\mu} = (\phi, \vec{A})$ or for given $J^{\mu} = (\rho, \vec{J})$)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- The motion of a test particle is dictated by Lorentz force : $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$
- GR (Just like above, we will have two equations)

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

- Fields
- Particles (Trajectory)

Electromagnetism

- The fields themselves are governed by *Maxwell's equations* (Can get \vec{E}, \vec{B} for given $A^{\mu} = (\phi, \vec{A})$ or for given $J^{\mu} = (\rho, \vec{J})$)
- The motion of a test particle is dictated by Lorentz force : $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$
- GR (Just like above, we will have two equations)
 - The fields themselves are governed by *Einstein's equations* (Calculate $g_{\mu\nu}$ for the given $T^{\mu\nu}$)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

- Fields
- Particles (Trajectory)

Electromagnetism

- The fields themselves are governed by *Maxwell's equations* (Can get \vec{E}, \vec{B} for given $A^{\mu} = (\phi, \vec{A})$ or for given $J^{\mu} = (\rho, \vec{J})$)
- The motion of a test particle is dictated by Lorentz force : $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

GR (Just like above, we will have two equations)

The fields themselves are governed by *Einstein's equations* (Calculate $g_{\mu\nu}$ for the given $T^{\mu\nu}$)

The motion of a test particle are governed by the *geodesic equation* $(\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0)$: Dot is differentiation with respect to

A common tale of two equations describing classical theories

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it

Breaking GR into two parts

Crash course Geodesic equation $dS = ds \left[ds^{2} - dt^{2} + ds^{2} +$

- The fields themselves are governed by *Maxwell's equations* (Can get \vec{E}, \vec{B} for given $A^{\mu} = (\phi, \vec{A})$ or for given $J^{\mu} = (\rho, \vec{J})$)
- The motion of a test particle is dictated by Lorentz force $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$
- GR (Just like above, we will have two equations)
 - The fields themselves are governed by *Einstein's equations* (Calculate $g_{\mu\nu}$ for the given $T^{\mu\nu}$)
 - The motion of a test particle are governed by the *geodesic equation* $(\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0)$: Dot is differentiation with respect to proper time

$$n = 0$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

A common tale of two equations describing classical theories

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

- Fields
- Particles (Trajectory)
- Electromagnetism

- The fields themselves are governed by *Maxwell's equations* (Can get \vec{E}, \vec{B} for given $A^{\mu} = (\phi, \vec{A})$ or for given $J^{\mu} = (\rho, \vec{J})$)
- The motion of a test particle is dictated by Lorentz force : $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$
- GR (Just like above, we will have two equations)
 - The fields themselves are governed by *Einstein's equations* (Calculate $g_{\mu\nu}$ for the given $T^{\mu\nu}$)
 - The motion of a test particle are governed by the *geodesic equation* $(\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0)$: Dot is differentiation with respect to proper time

The RHS of this equation is zero for free-fall objects in gravity.

F = mn = -kn

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

Main two objects of classical field theories

- Fields
- Particles (Trajectory)

Electromagnetism

- The fields themselves are governed by *Maxwell's equations* (Can get \vec{E}, \vec{B} for given $A^{\mu} = (\phi, \vec{A})$ or for given $J^{\mu} = (\rho, \vec{J})$)
- The motion of a test particle is dictated by Lorentz force : $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

GR (Just like above, we will have two equations)

The fields themselves are governed by *Einstein's equations* (Calculate $g_{\mu\nu}$ for the given $T^{\mu\nu}$)

- The motion of a test particle are governed by the *geodesic equation* $(\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0)$: Dot is differentiation with respect to proper time
- The RHS of this equation is zero for free-fall objects in gravity.
 - What would happen if we have free fall gravity + electrodynamics force?

A common tale of two equations describing classical theories

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation Main two objects of classical field theories

- Fields
- Particles (*Trajectory*)
- Electromagnetism
 - The fields themselves are governed by *Maxwell's equations* (Can get \vec{E}, \vec{B} for given $A^{\mu} = (\phi, \vec{A})$ or for given $J^{\mu} = (\rho, \vec{J})$)
 - The motion of a test particle is dictated by Lorentz force : $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$
- GR (Just like above, we will have two equations) $k_{\mu\nu} \frac{1}{2} \frac{2}{3} \frac{1}{3} = KT_{\mu\nu}$
 - The fields themselves are governed by *Einstein's equations* (Calculate $g_{\mu\nu}$ for the given $T^{\mu\nu}$)

n+ Funn's = 0

・ コ ト ・ 雪 ト ・ ヨ ト ・

) No grav

- The motion of a test particle are governed by the *geodesic equation* $(\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0)$: Dot is differentiation with respect to proper time
- The RHS of this equation is zero for free-fall objects in gravity.
 - What would happen if we have free fall gravity + electrodynamics force? $\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho} \dot{x}^{\nu} \dot{x}^{\rho} = \frac{q}{q_{\rho}} F^{\mu}_{\nu} \dot{x}^{\nu}$

GR in a nutshell Recall

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation Principle of least action $\rightarrow S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt L(x^{i}(t), \dot{x}^{i}(t))$ (Remember : A functional)

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへ⊙

Re

nutshell Rohan Kulkarni

GR in a

Literature

What is GR? Have I had a small taste of it before?

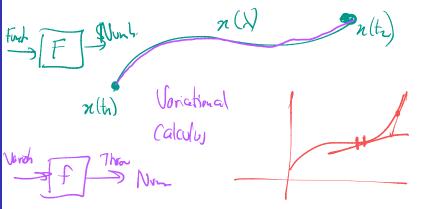
Breaking GR into two parts

Crash course Geodesic equation

Recall

Principle of least action $\rightarrow S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt L(x^{i}(t), \dot{x}^{i}(t))$ (Remember : A functional)

If you see how the action changes for a *small perturbation* in the path $\rightarrow x^{i}(t) \rightarrow x^{i}(t) + \delta x^{i}(t)$ Keep the end points fixed $\rightarrow \delta x^{i}(t_{1}) = \delta x^{i}(t_{2}) = 0$



(日)

GR in a nutshell

Rohan

Kulkarni

had a small

Crash course Geodesic equation Recall

$$F = m\ddot{n} = -\frac{\partial V}{\partial n}$$

- Principle of least action $\rightarrow S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt L(x^{i}(t), \dot{x}^{i}(t))$ (Remember : A functional)
- If you see how the action changes for a *small perturbation* in the path $\rightarrow x^{i}(t) \rightarrow x^{i}(t) + \delta x^{i}(t)$ Keep the end points fixed $\rightarrow \delta x^{i}(t_{1}) = \delta x^{i}(t_{2}) = 0$
- Now if you compute $\delta S
 ightarrow$ You will get the *Euler Lagrange* equations

$$\frac{\partial L}{\partial x^{i}} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

$$\frac{\partial L}{\partial x^{i}} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

$$\dot{n} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

$$\dot{n} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right)$$

$$particle in flat = 0$$

$$\int \frac{d}{dt} \left(\frac{2Lmn}{2} \right) = mn$$

$$r_{x} = \frac{d}{dt} \left(\frac{2Lmn}{2} \right) = mn$$

Recall

- Principle of least action $\rightarrow S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt L(x^{i}(t), \dot{x}^{i}(t))$ (Remember : A functional)
- If you see how the action changes for a *small perturbation* in the path $\rightarrow x^{i}(t) \rightarrow x^{i}(t) + \delta x^{i}(t)$ Keep the end points fixed $\rightarrow \delta x^{i}(t_{1}) = \delta x^{i}(t_{2}) = 0$
- Now if you compute $\delta S
 ightarrow$ You will get the *Euler Lagrange* equations

$$\frac{\partial L}{\partial x^i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^i} \right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

If we use this in *flat space for a particle* with just kinetic energy i.e. $\rightarrow L = \frac{1}{2}m(\dot{x^i})^2$

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Recall

- Principle of least action $\rightarrow S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt L(x^{i}(t), \dot{x}^{i}(t))$ (Remember : A functional)
- If you see how the action changes for a *small perturbation* in the path $\rightarrow x^{i}(t) \rightarrow x^{i}(t) + \delta x^{i}(t)$ Keep the end points fixed $\rightarrow \delta x^{i}(t_{1}) = \delta x^{i}(t_{2}) = 0$
- Now if you compute $\delta S
 ightarrow$ You will get the *Euler Lagrange* equations

$$\frac{\partial L}{\partial x^i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^i} \right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- If we use this in *flat space for a particle* with just kinetic energy i.e. $\rightarrow L = \frac{1}{2}m(\dot{x^i})^2$
- We get

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Recall

- Principle of least action $\rightarrow S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt L(x^{i}(t), \dot{x}^{i}(t))$ (Remember : A functional)
- If you see how the action changes for a *small perturbation* in the path $\rightarrow x^{i}(t) \rightarrow x^{i}(t) + \delta x^{i}(t)$ Keep the end points fixed $\rightarrow \delta x^{i}(t_{1}) = \delta x^{i}(t_{2}) = 0$
- Now if you compute $\delta S
 ightarrow$ You will get the *Euler Lagrange* equations

$$\frac{\partial L}{\partial x^{i}} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- If we use this in *flat space for a particle* with just kinetic energy i.e. $\rightarrow L = \frac{1}{2}m(\dot{x^i})^2$
- We get
 - (Newton's law) $m\ddot{x}^i = 0$

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Recall

- Principle of least action $\rightarrow S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt L(x^{i}(t), \dot{x}^{i}(t))$ (Remember : A functional)
- If you see how the action changes for a *small perturbation* in the path $\rightarrow x^{i}(t) \rightarrow x^{i}(t) + \delta x^{i}(t)$ Keep the end points fixed $\rightarrow \delta x^{i}(t_{1}) = \delta x^{i}(t_{2}) = 0$
- Now if you compute $\delta S \rightarrow$ You will get the **Euler Lagrange** equations

$$\frac{\partial L}{\partial x^{i}} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

- If we use this in flat space for a particle with just kinetic energy i.e. $\rightarrow L = \frac{1}{2}m(\dot{x}^{i})^{2}$ We get (Newton's law) $m\ddot{x}^{i} = 0$ \rightarrow $m\ddot{x}^{1} = 0$ $m\ddot{x}^{2} = 0$ $m\ddot{x}^{2} = 0$ $m\ddot{y} = 0$
 - Which makes sense because $\rightarrow F = m\ddot{x}^i = \left(-\frac{\partial V}{\partial x^i} = -\nabla V\right)$ $m_{\chi}^2 = 0$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Recall

- Principle of least action $\rightarrow S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt L(x^{i}(t), \dot{x}^{i}(t))$ (Remember : A functional)
- If you see how the action changes for a *small perturbation* in the path $\rightarrow x^{i}(t) \rightarrow x^{i}(t) + \delta x^{i}(t)$ Keep the end points fixed $\rightarrow \delta x^{i}(t_{1}) = \delta x^{i}(t_{2}) = 0$
- Now if you compute $\delta S \rightarrow$ You will get the *Euler Lagrange* equations

$$\frac{\partial L}{\partial x^{i}} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

- If we use this in *flat space for a particle* with just kinetic energy i.e. $\rightarrow L = \frac{1}{2}m(\dot{x^i})^2$
- We get
 - (Newton's law) mxⁱ = 0
 - Which makes sense because $\rightarrow F = m\ddot{x}^i = \left(-\frac{\partial V}{\partial x^i} = -\nabla V\right)$
- You could solve the Newton's law for a particle to get its *trajectory* (this is all happening in Flat Euclidean 3 space (R³))

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

nutshell Rohan Kulkarni

GR in a

- had a small

Crash course Geodesic equation

Recall

- Principle of least action $\rightarrow S[x^{i}(t)] = \int_{t_{*}}^{t_{2}} dt L(x^{i}(t), \dot{x}^{i}(t))$ (Remember : A functional)
- If you see how the action changes for a *small perturbation* in the path \rightarrow $x^{i}(t) \rightarrow x^{i}(t) + \delta x^{i}(t)$ Keep the end points fixed $\rightarrow \delta x^{i}(t_{1}) = \delta x^{i}(t_{2}) = 0$
- Now if you compute $\delta S \rightarrow$ You will get the **Euler Lagrange** equations

$$\frac{\partial L}{\partial x^{i}} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

- If we use this in *flat space for a particle* with just kinetic energy i.e. \rightarrow $L = \frac{1}{2}m\left(\dot{x^{i}}\right)^{2}$
- We get
 - (Newton's law) $m\ddot{x}^i = 0$
 - Which makes sense because $\rightarrow F = m\ddot{x}^i = \left(-\frac{\partial V}{\partial x^i} = -\nabla V\right)$
- You could solve the Newton's law for a particle to get its trajectory (this is all happening in Flat Euclidean 3 space (\mathbb{R}^3)
- Our immediate goal is to get the write down the Lagrangian and action \rightarrow for particles in curved space (Eventually spacetime)

GR in a nutshell

Rohan Kulkarni Lagrangian of a free particle in flat space (Keput of part slide)

 $L = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$\vec{R} = (A_n, A_5, A_7) = (A_1, A_2, A_3)$

イロト 不得 トイヨト イヨト

3

Lagrangian of a free particle in flat space

$L = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right)$

Also can be rewritten using

$$(g_{\mathsf{flat}})_{ij} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$
 $L = rac{1}{2}m \ (g_{\mathsf{flat}})_{ij} \dot{x}^i \dot{x}^j$

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation Lagrangian of a free particle in flat space

$$L = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right)$$

Also can be rewritten using

$$(g_{\text{flat}})_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$L = \frac{1}{2}m \ (g_{\text{flat}})_{ij} \dot{x}^i \dot{x}^j$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● の Q @

• Euler Lagrange equation gives us $\ddot{x}^i = 0$

GR in a nutshell

Rohan Kulkarni

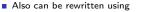
Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation Lagrangian of a free particle in flat space

$L = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right)$



$$(g_{\text{flat}})_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$L = \frac{1}{2}m \ (g_{\text{flat}})_{ij} \dot{x}^{i} \dot{x}^{i}$$

• Euler Lagrange equation gives us $\ddot{x}^i = 0$

For any arbitrary $g_{ij}(\vec{x})$,

$$L = \frac{1}{2} m g_{ij} \left(\vec{x} \right) \dot{x}^i \dot{x}^j$$

$$A^{i} = \begin{bmatrix} A^{\dagger} \\ A^{2} \\ A^{\gamma} \end{bmatrix}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation Lagrangian of a free particle in flat space

$$L = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right)$$

Also can be rewritten using

$$(g_{\text{flat}})_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$L = \frac{1}{2}m \ (g_{\text{flat}})_{ij} \dot{x}^{i} \dot{x}^{j}$$

- Euler Lagrange equation gives us $\ddot{x}^i = 0$
- For any arbitrary $g_{ij}(\vec{x})$,

$$L = \frac{1}{2} m g_{ij} \left(\vec{x} \right) \dot{x}^i \dot{x}^j$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 \blacksquare We will use Euler-Lagrange equations on it \rightarrow Geodesic equation

Calculating the geodesic equation for non-relativistic particle in curved space

GR in a nutshell

Rohan Kulkarni

Literature

Recall E-L equation

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$$L = \frac{1}{2} m g_{ij} \left(\vec{x} \right) \dot{x}^i \dot{x}^j$$

$$\frac{\partial L}{\partial x^i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^i} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Calculating the geodesic equation for non-relativistic particle in curved space

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$$L = \frac{1}{2} m g_{ij} \left(\vec{x} \right) \dot{x}^i \dot{x}^j$$

LHS

$$\frac{\partial L}{\partial x^{i}} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

$$\frac{\partial L}{\partial x^i} = \frac{m}{2} \frac{\partial g_{jk}}{\partial x^i} \dot{x}^j \dot{x}^k$$

ヘロト ヘ週ト ヘヨト ヘヨト

E 940

Calculating the geodesic equation for non-relativistic particle in curved space

GR in a nutshell

Rohan Kulkarni

Crash course Geodesic equation

$$L = \frac{1}{2}m g_{ij}\left(\vec{x}\right) \dot{x}^{i} \dot{x}^{j}$$

$$\frac{\partial L}{\partial x^{i}} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

ลเ

Recall E-L equation

RHS

$$\frac{\partial L}{\partial x^i} = \frac{m}{2} \frac{\partial g_{jk}}{\partial x^i} \dot{x}^j \dot{x}^k$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}^{i}}\right) = \frac{d}{dt}\left(mg_{ik}\left(x^{j}\right)\dot{x}^{k}\right) = m\frac{\partial g_{ik}}{\partial x^{j}}\dot{x}^{j}\dot{x}^{k} + mg_{ik}\ddot{x}^{k}$$

Calculating the geodesic equation for non-relativistic particle in curved space

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation

$$L = \frac{1}{2}m g_{ij}(\vec{x}) \dot{x}^i \dot{x}^j$$

$$\frac{\partial L}{\partial x^{i}} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}^{i}} \right)$$

RHS

Recall E-L equation

$$\frac{\partial L}{\partial x^i} = \frac{m}{2} \frac{\partial g_{jk}}{\partial x^i} \dot{x}^j \dot{x}^k$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}^{i}}\right) = \frac{d}{dt}\left(mg_{ik}\left(x^{j}\right)\dot{x}^{k}\right) = m\frac{\partial g_{ik}}{\partial x^{j}}\dot{x}^{j}\dot{x}^{k} + mg_{ik}\ddot{x}^{k}$$

LHS=RHS

$$\begin{split} g_{ik}\ddot{x}^{k} + \left(\frac{\partial g_{ik}}{\partial x^{i}} - \frac{1}{2}\frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} &= 0\\ g_{ik}\ddot{x}^{k} + \frac{1}{2}\left(2\frac{\partial g_{ik}}{\partial x^{j}} - \frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} &= 0\\ g_{ik}\ddot{x}^{k} + \frac{1}{2}\left(\underbrace{\frac{\partial g_{ik}}{\partial x^{j}} + \frac{\partial g_{ij}}{\partial x^{k}}}_{\mathbf{Symmetry with } j \coloneqq k} - \frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} &= 0 \end{split}$$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation Inverse metric

 $=\delta_k^i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Matrix multiplication

GR in a nutshell

Rohan Kulkarni

Literature

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation Inverse metric

$$\underbrace{\mathsf{g}^{ij}\mathsf{g}_{jk}}_{k} = \delta^i_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Matrix multiplication

Recall the equation we derived in the slide before

$$g_{ik}\ddot{x}^{k} + \frac{1}{2}\left(\frac{\partial g_{ik}}{\partial x^{j}} + \frac{\partial g_{ij}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} = 0$$

GR in a nutshell

Rohan Kulkarni

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation Inverse metric

$$\underbrace{g^{ij}g_{jk}}_{} = \delta^i_k$$

Matrix multiplication

Recall the equation we derived in the slide before

$$g_{ik}\ddot{x}^{k} + \frac{1}{2}\left(\frac{\partial g_{ik}}{\partial x^{j}} + \frac{\partial g_{ij}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} = 0$$

now,

$$g_{ik}\ddot{x}^{k} + \underbrace{\frac{1}{2}g^{il}\left(\frac{\partial g_{lk}}{\partial x^{j}} + \frac{\partial g_{lj}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}}\right)}_{\Gamma^{i}_{ik} = \Gamma^{i}_{kj}}\dot{x}^{j}\dot{x}^{k} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GR in a nutshell

Rohan Kulkarni

Crash course Geodesic equation

Inverse metric

$$\underbrace{g^{ij}g_{jk}}_{k} = \delta^i_k$$

Matrix multiplication

.

Recall the equation we derived in the slide before

$$g_{ik}\ddot{x}^{k} + \frac{1}{2}\left(\frac{\partial g_{ik}}{\partial x^{j}} + \frac{\partial g_{ij}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} = 0$$

now,

$$g_{ik}\ddot{x}^{k} + \underbrace{\frac{1}{2}g^{il}\left(\frac{\partial g_{lk}}{\partial x^{i}} + \frac{\partial g_{lj}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}}\right)}_{\Gamma^{i}_{jk} = \Gamma^{i}_{kj}}\dot{x}^{j}\dot{x}^{k} = 0$$

giving us

 $\ddot{x}^i + \Gamma^i_{ik} \dot{x}^j \dot{x}^k = 0$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● の Q @

GR in a nutshell

Rohan Kulkarni

. . . .

What is GR? Have I had a small taste of it before?

Breaking GR into two parts

Crash course Geodesic equation Inverse metric

$$\underbrace{g^{ij}g_{jk}}_{=} = \delta^i_k$$

Matrix multiplication

Recall the equation we derived in the slide before

$$g_{ik}\ddot{x}^{k} + \frac{1}{2}\left(\frac{\partial g_{ik}}{\partial x^{j}} + \frac{\partial g_{ij}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{i}}\right)\dot{x}^{j}\dot{x}^{k} = 0$$

now,

giving us

$$g_{jk}\ddot{x}^{k} + \underbrace{\frac{1}{2}g^{jl}\left(\frac{\partial g_{jk}}{\partial x^{j}} + \frac{\partial g_{jj}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}}\right)}_{\Gamma^{i}_{jk} = \Gamma^{i}_{kj}}\dot{x}^{j}\dot{x}^{k} = 0$$

 $\ddot{x}^i + \Gamma^i_{ik} \dot{x}^j \dot{x}^k = 0$

This is known as the geodesic equation and its solutions are known as geodesics.