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Abstract
A recent study has found that massive particles like axions emitted from stars
can enter gravitationally bound orbits around them. These particles then accu-
mulate over the large astronomical lifetime of the star, forming a density profile
around them called stellar basins. This density profile is known as the solar
axion basin. In another study, it has been established that an electromagnetic
signal with a wavelength corresponding to half of the axion mass produces a
stimulated decay of axions into photons, which we call an echo. The geometry
of this echo is such that the axion decays into two back-to-back facing photons.
This master’s thesis combines these ideas to predict echo signals from axion stel-
lar basins of various stellar objects, which we call basinschein. First, we predict
the echo of keV axions from the basin of our sun, a white dwarf, and a neutron
star. Secondly, consider the axion basin of our sun for various axion masses and
predict their echo signals. Then, we estimate an echo signal from Milky Way’s
dark matter halo. The echo signal from all these scenarios is too weak to be
detected by past and present instruments; hence, it is improbable that we find a
signature of such a phenomenon in current and archived data.

Zussamenfassung
Eine kürzlich durchgeführte Studie hat herausgefunden, dass massive Teilchen
wie Axionen, die von Sternen emittiert werden, in gravitativ gebundene Um-
laufbahnen um sie herum eintreten können. Diese Partikel sammeln sich dann
über die große astronomische Lebensdauer des Sterns an und bilden um sie
herum ein Dichteprofil, das als stellare Becken bezeichnet wird. Dieses Dichte-
profil ist als solares Axionbecken bekannt. In einer anderen Studie wurde festge-
stellt, dass ein elektromagnetisches Signal mit einer Wellenlänge, die der Hälfte
der Axionmasse entspricht, einen stimulierten Zerfall von Axionen in Photo-
nen hervorruft, den wir als Echo bezeichnen. Die Geometrie dieses Echos ist
derart, dass das Axion in zwei Rücken an Rücken gegenüberliegende Photonen
zerfällt. Diese Masterarbeit kombiniert diese Ideen, um Echosignale von Axion-
Stellarbecken verschiedener Sternobjekte vorherzusagen, die wir Beckenschein
nennen. Zuerst sagen wir das Echo von keV-Axionen aus dem Becken unserer
Sonne, eines Weißen Zwergs und eines Neutronensterns voraus. Betrachten Sie
zweitens das Axionbecken unserer Sonne für verschiedene Axionmassen und
sagen Sie deren Echosignale voraus. Dann schätzen wir ein Echosignal aus dem
Halo aus dunkler Materie der Milchstraße. Das Echosignal all dieser Szenarien
ist zu schwach, um von früheren und gegenwärtigen Instrumenten erkannt zu
werden; Daher ist es unwahrscheinlich, dass wir in aktuellen und archivierten
Daten eine Signatur eines solchen Phänomens finden.
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Chapter 1

Introduction

Astroparticle physics is a relatively new and rapidly expanding field of study
that examines the behavior and effects of particles emitted from stellar objects.
Although astroparticle physics has been around for only a few decades, its po-
tential applications are vast and continue to grow exponentially. In addition to
studying the particles themselves, astroparticle physics also investigates the ef-
fects that these particles have on other objects in space. Astroparticle physics can
also help us to understand the nature of dark matter. By better understanding
the particles that make up our universe, we can gain a greater understanding of
the universe as a whole.

Axions are hypothetical particles predicted by various extensions to the Stan-
dard Model of particle physics. They were originally proposed to solve the
strong CP problem in quantum chromodynamics [1]. These particles are very
weakly interacting [2–4], and so far have evaded detection. However, they may
be produced in the early universe [5] and could make up a significant fraction
of the dark matter in the universe [6], as well as play a role in matter-antimatter
asymmetry [7].

There are various ways to search for axions, including haloscopes, helio-
scopes, and laser interferometer experiments. Most of these experiments use
a magnetic field to convert axions into photons, which can then be detected.
There are several astrophysical and cosmological constraints on the properties
of axions. One strong astrophysical constraint comes from the Helium burning
lifetime of globular cluster stars, which constrains the axion-photon coupling to
be less than 10−10 GeV−1 [8]. Other constraints come from the effects of axions
on the cosmic microwave background, the large-scale structure of the universe,
and the abundance of axions in the early universe. A detailed summary of as-
trophysical axion constraints can be found in [8].

Most axions produced in stellar objects like the sun escape into deep space.
Still, a tiny fraction of particles enters gravitationally bound orbits around the
sun due to their non-null mass. These bound axions form a density profile
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around the stellar object by accumulating over the astronomical lifetimes of these
objects. This density profile is called as axion basin [9].

According to quantum field theory, pseudoscalars like axions that interact
with the electromagnetic force can decay into two photons via the chiral anomaly
[10]. But, they have lifetimes larger than the age of our universe. When these
axion basins are irradiated by photons having a frequency half their mass, they
boost the decay rate of the axions, which in turn significantly reduces their life-
times [11, 12]. The geometry of such a process, where the decay rate is boosted,
produces two back-to-back photons. We call this stimulated decay of axions into
photons as axion echo (In contrast to the literature, where axion echo is referred
to as a signal corresponding to only one of the two photons).

This thesis’s subject is to astrophysically constrain the axion-photon coupling
gaγγ by indirect detection of axions that are gravitationally bound to various stel-
lar objects. To constrain the axion-photon coupling, we estimate the probability
of detecting photons emitted due to the stimulated decay of photons from dif-
ferent stellar basins. We call this phenomenon axion basinschein. Furthermore,
we look for photons emitted by stimulated decay from the Milky Way’s (MW)
Dark Matter (DM) halo. We call this axion haloschein.

To clarify other nomenclatures, if we observe the axion echo in the direction
of the source stimulating the decay, we call it forwardschein (as we will be ob-
serving forward decayed photons from the perspective of the source). Suppose
we are looking for the axion echo in the direction opposite to the stimulating
source. In that case, we call it gegenschein (as we will observe the back decayed
photon from the source’s perspective). In literature, the terms "axion echo" and
"axion gegenschein" are used interchangeably depending on the author’s pref-
erence. In this thesis, we will estimate axion echos by assuming that the photon
sources that stimulate our decay are point sources. On the other hand, the
gegenschein geometry can get quite intricate, especially if we are not observing
a point source. An excellent description of a generic gegenschein geometry is
discussed in [13]. Estimates for various echo/gegenschein signals in literature
have been performed and can be found in [11, 13, 14].
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Chapter 2

Axions

2.1 Strong CP problem
Historically speaking, the strong CP problem theoretically motivated the exis-
tence of an axion. Following [10] and [15], we will start with a brief yet self-
contained summary of the strong CP problem. Let us start by looking at the
gluon self-dynamics terms in the SU(3),

LQCD ⊃ −1
4

Ga
µνGµν a +

g2

32π2 θG̃a
µνGµν a, (2.1)

where G̃a
µν =

1
2

εµνστGστ a.

Ga
µν is the gluon field strength tensor. The first term here comes from the typical

kinetic term of the gluon field. It is CPT invariant i.e. individually invariant
under C, P, and T. The second term comes into the equation when you contract
the Ga

αβGa
γδ with εαβγδ. This term breaks CP symmetry (CPT is still conserved).

This is a problem as experimentally; we do not observe CP violation in strong
interactions.

One way to satisfy this would be to take the θ = 0 by assuming the GG̃ term
to be a boundary term, i.e., a total derivative of a 4-current, and then we can
safely ignore it. This is done by taking a Chern-Simons current,

Kµ =
1
2

εµαβγ

[
Aa

αGa
βγ − g

3
f abc Aa

α Ab
β Ac

γ

]
, (2.2)

which can be written as,
εµναβFa

µνFa
αβ = ∂µKµ. (2.3)

An important thing to note here would be that total derivatives never con-
tribute to perturbation theory. This is because the Feynman rule of such a term
would have a factor of the sum of all momenta going into the vertex minus the
momenta going out - which gives a zero. This means that such a term could
only contribute to non-perturbative effects.
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We can see another interesting aspect of this problem by introducing the first
generation of quarks interacting with the gluons. In this toy model, we assume
these quarks have inherited mass from the Higgs via a Yukawa-type coupling
after spontaneous symmetry breaking, giving us the following Lagrangian,

L = −1
4

Ga
µνGµν a +

g2

32π2 θG̃a
µνGµν a + q̄Li /DqL + q̄Ri /DqR − (mq̄LqR + m∗q̄RqL) .

(2.4)
For the m to be mass, we need it to be real. If we assume m = |m| eiα, then we
can use a axial U(1)A rotation,

qL → qLei α
2 , (2.5)

qR → qRe−i α
2 , (2.6)

to eliminate the phase and make m real. The left and right-handed fields are
rotated in the opposite direction under this symmetry. This U(1)A symmetry
induces CP violation in strong interactions via loop diagrams. This is called
the axial or chiral anomaly. After performing this rotation (and a lengthy cal-
culation associated with it which we skipped), we get an additional term in the
Lagrangian,

L → L+
g2

32π2 αGa
µνGµν a. (2.7)

This term is strikingly similar to the CP violating term in eq. (2.1). We can
now define a new variable,

θ̄ ≡ θ + α, (2.8)

such that we get a term like,

LQCD ⊃ g2

32π2 θ̄G̃a
µνGµν a, (2.9)

in our Lagrangian. Hence, if we get θ̄ = 0, our Lagrangian will be CP-symmetric
again. But, if we perform another axial rotation, our quark mass will be complex
again. The only way θ → 0 is when the θ and α terms cancel each other perfectly
in θ̄. This seems to be by pure chance, and the strong CP problem questions the
reasoning behind the exact cancellation of these terms.

We know that electroweak theory violates CP symmetry. Hence, there is no
harm if there is a CP violation in the strong sector as long as we can find a plau-
sible solution. On the contrary, a strong CP violation is directly connected to the
existence of an electric dipole moment (EDM) dn for a neutron. Experimentally,
we have not found this to be the case in nature. Neutron does have a magnetic
dipole moment, but the existence of an electric dipole moment would violate P
and T symmetry. If T symmetry is broken, CP has to be violated as CPT needs
to be conserved.
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Figure 2.1: CPT transformations of a neutron. The figure is taken and modified
from [16].

Classical Interpretation The existence of an electric dipole moment due to CP
violation in the strong sector can be motivated in a classical setting [17]. In this
picture, the neutron consists of three quarks (up, down, down). These quarks
form a triangle, as seen in the left panel of fig.(2.2),

Figure 2.2: Left:A classical picture of the neutron ; Right: Axion solution to the
Strong CP problem, a dynamical angle between the up and down quarks will
be set such that the neutron relaxes itself to the minimum energy configuration
without a dipole moment. This dynamic angle is called the axion. The figure is
taken from [17].

We can estimate the value for the magnitude of neutron EDM for this classical
model of a neutron using a classical picture where d⃗n = ∑ q⃗r. The direction of
d⃗n is the same as the direction of neutron spin (with a factor of +1 if parallel and
-1 if anti-parallel). Each pair of quarks will contribute to the dipole moment as
∼ ern. We can use the fact that neutron has a size rn ∼ 1/mπ, we get∣∣∣dn =

ern

3

∣∣∣ ≈ 10−13
√

1 − cos ϑ e cm. (2.10)

From this calculation, we expect neutron EDM to be at the order of 10−13cm.
Until now, experiments have not been able to measure any EDM for the neutron,
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giving an extremely tight bound of dn < 10−26e cm [17]. This implies that the
angle ϑ < 10−13, which means that the three quarks should be collinear, as seen
in the right panel of fig.(2.2). At its heart, the strong CP problem concerns why
ϑ < 10−13 is so small.

2.2 QCD Axion
The axion is one of the solutions to the strong CP problem proposed by Pecci
and Quinn [1]. The gist of this solution is that we assume θ̄ to be dynamic by
letting θ̄ → θ̄ + a

fa
. a is the axion field, and fa is the axion decay constant. This

means that our new field also couples to the gluon similar to the CP-symmetry
breaking term,

g2

32π2
a
fa

G̃a
µνGµν a (2.11)

Then, we choose a minimized potential for θ = 0 and solve the problem
dynamically.

To use the Pecci-Quinn mechanism, we begin by introducing a complex scalar
field (also called the PQ field),

Φ = χeiϕ = χei a
fa , (2.12)

where we redefined the ϕ field with a, fa is known as the axion decay con-
stant, which ensures that the term in the exponent is dimensionless.

In the next step, we need to introduce an additional chiral U(1) symmetry
- the U(1)PQ symmetry for the Φ field, known as the Pecci-Quinn symmetry.
This is a global symmetry given by Φ → eiαΦ, under which the theory remains
invariant. With respect to the a field, this same symmetry translates into a shift
symmetry a → a + α. The U(1)PQ symmetry is spontaneously broken by the
potential,

V(Φ) = λ

(
|Φ|2 − f 2

a
2

)2

, (2.13)

to a non-zero vacuum expectation value of Φ proportional to the decay constant
fa. The shape of this potential is similar to the Mexican hat potential (This is the
same shape of the potential that introduces the Higgs boson in the electroweak
theory via spontaneous symmetry breaking) like the top-hat (hat-shaped poten-
tial aligned on the top-left of the figure) in fig.(2.3). Goldstone’s theorem says
that breaking a continuous symmetry always results in a massless excitation,
known as the Goldstone mode. The massless particle associated with this exci-
tation is known as a Goldstone boson [18]. Then, if we consider QCD instanton
effects, the potential energy gets a contribution

V(Φ, Φ†) → V(Φ, Φ†) +
m2

π f 2
π

4
mumd

(m2
u + m2

d)

[
1 − cos

(
a
fa

)]
, (2.14)
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such that it tilts the Mexican hat potential. This tilting provides the axion with
its mass, like in the second and third step of the hat-shaped potential in fig.(2.3).
This provides a mass to our originally massless particle, giving us the axion.
In short, the axion is a pseudo-Nambu-Goldstone boson due to spontaneously
broken U(1)PQ in the presence of QCD instantons.

Figure 2.3: The Vacuum Realignment Mechanism. At temperatures T = fa, the
complex Peccei-Quinn scalar field develops its vacuum expectation value and
breaks the global U(1)PQ symmetry. The figure and its description is taken
from [19].

The axion mass ma can be calculated in chiral perturbation theory and at zero
temperature is given by [20],

ma,QCD ≈ 6 µeV
(

1012

fa

)
. (2.15)

At high temperatures, for example, above the QCD phase transition tempera-
tures, the axion is massless [19]. In the original axion model proposed by Pecci-
Quinn, fa is taken to be the order of the electroweak (EW) breaking scale. This
does not only lead to quite heavy axions, ma ∼ keV, but also sizable coupling
to other standard model (SM) particles. The PQ axion model was ruled out by
beam dump and other experimental constraints [19]. It has been found that the
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essence of the PQ mechanism can still be retained while new degrees of freedom
are added. This allows the symmetry breaking scale to go to higher energies,
much greater than the EW symmetry breaking. There are two most prominent
examples :

• DSFZ [21,22]: In addition to the second Higgs doublet Φ, another complex
SM singlet field is added.

• KSVZ [23, 24]: In this model, additional heavy SM quarks are included.

Both of these models let fa go to arbitrarily high scales, which makes the axion
light ma ∼ µeV and very weakly interacting. These axion models are called
invisible.

2.3 Axion Like Particles (ALPs)
An important model-independent feature of the PQ mechanism is that the axion
always couples to the photon via,

LAγγ = gAγγ
α

2π

A
fA

Fµν F̃µν =
g
4

AFµν F̃µν, (2.16)

where A is the ALP (We use this notation just for this section to distinguish
with a being the QCD axion. Except this section, we use a for any axions) and
α here is the fine structure constant. Using this coupling, one can consider a
generic model where the axion mass is not set by QCD dynamics but instead
due to some other UV effect. The spontaneously broken potential to give the
axion mass looks similar to eq.(2.14) [19],

VALP ∼ Λ4
[

1 − cos
(

A
fA

)]
(2.17)

In such models, we have two free parameters ma is also a free parameter along
with gaγγ ∼ f−1, giving us two free parameters instead of one. The primary
terms in the Lagrangian of such a model are,

L =
1
2
(∂µa)2 +

1
2

m2
aa +

gaγγ

4
Fµν F̃µν + .. (2.18)

The motivation for these particles comes from the fact that most experiments
looking for ultralight axions are sensitive to the couplings of photons.

Such models, where the mass is not an artifact of QCD effects, are Axion-
Like Particles (ALPs). As a rule of thumb, we will specifically use the term QCD
axion if we are referring to the axion for which the properties are set by QCD
dynamics and necessarily solve the strong CP problem.

It is also worth mentioning that string theory predicts many axions and ALPs
to exist. The existence of these string theory axions is many times referred to as
axiverse [25].
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2.4 Axion Production: Misalignment Mechanism
In the early universe, we had temperatures T ≫ fa; hence, the PQ symmetry
was not broken. Once the temperature fell below the axion decay constant, the
axion came into existence as a massless Goldstone boson. Further, once the
QCD phase transition ΛQCD happened, axions shift symmetry was broken, and
non-perturbative effects started to contribute. The axion field was frozen to a
constant value corresponding to the Hubble friction. Eventually, as the Hubble
parameter fell below the axion mass, the axion field began damped oscillations
around a CP-conserving value.

The Lagrangian for this system can be written down as follows,

L = −
[

1
2
(∂µa)2 + V(a)

]
. (2.19)

where the potential can be written as

V(a) = m2
a f 2

a

[
1 − cos

(
a
fa

)]
, (2.20)

from eq.(2.17). It is convenient to work with the dimensionless field θ ≡
a(x)/ fa, giving us [19],

L = f 2
a

[
−1

2
(∂µθ)(∂µθ)− V(θ)

]
, (2.21)

V(θ) = m2
a f 2

a (1 − cos θ) , (2.22)

We define the geometry of an expanding universe by the FLRW metric. Assum-
ing a flat k = 0 FLRW metric, we have the line element defined by

ds2 = −dt2 + R2(t)d⃗r2, (2.23)

gµν = Diag(1,−R2(t),−R2(t),−R2(t)). (2.24)

The action is given by,
A =

∫
d4x
√
−gLθ. (2.25)

By varying the θ field, we expect the equation of motion to be of the form,

□θ + V′(θ) = 0, (2.26)

where □ is the d’Alembertian operator of a scalar field in a flat FLRW metric,
i.e., a flat expanding universe. The exact equations of motion for this field are
derived in appendix A. The equation of motion is given by eq.(A.24) (rewritten
here for convenience),(

∂2
t + 3H∂t −

∇2

R2

)
θ + ma(t)2 sin θ = 0. (2.27)

In the case that inflation occurs after the PQ transition, the axion field is homog-
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enized over large distances; hence, we can ignore the spatial derivatives in eq.
(2.27). For small θ, we can further approximate the equation as follows,

θ̈ + 3Hθ̇ + ma(t)2θ = 0. (2.28)

This is the equation for a damped harmonic oscillator, where the friction is pro-
portional to the Hubble parameter. We will call the term the Hubble friction
parameter.

We can solve this ODE by assuming H = c/t, where t is the time, and c is a
constant. For the initial conditions, we assume that H ≫ ma at very early times.
This makes the axion field overdamped and the term with the time derivative
vanishes,

a(ti) = ai, ȧ(ti) = 0. (2.29)

Figure 2.4: Evolution of axion (ϕ → θ in our calculation) quantities in the exact
solution to the background evolution of an ALP for a radiation-dominated uni-
verse. The figure and its description is taken from [20].

In fig.(2.4), we can see that the axion field is initially frozen, and at a certain
point, it starts damped oscillations as expected from the equation of motion.

25



2.5 ALP Dark matter
This section briefly discusses the candidacy of axions or ALPs as Dark Matter
(DM). Simply speaking, we need three conditions that any dark matter candidate
needs to satisfy [26] :

1. Relic Density: Any relevant DM theory must give us the predicted DM
density. A detailed calculation showing that zero-momentum modes of
ALP’s have a temperature-independent mass (from the misalignment mech-
anism) and satisfy the observed relic density is found in [27].

2. Weak Interactions with SM: Particle DM candidates must be extremely
weakly coupled to Standard Model (SM) particles. Axions are produced
due to anomalies and are very weakly coupled to SM particles. Axions can
decay into photons (In fact, this is the same interaction we will be probing
extensively in this thesis). The decay occurs due to a Chiral anomaly [10],
and substituting the current upper limit parameters for their coupling con-
stant and mass gives us their lifetime much longer than the age of the
universe [12].

3. Structure formation: DM candidates need to be able to form structure to
account for observational evidence. Although axions are very light, they
can form cold dark matter (CDM) via the misalignment mechanism. One
proposed idea is that they form a Bose-Einstein condensate, thus enabling
them to create structures [6].

2.6 Axion Searches
2.6.1 Detection principle
As seen before, axion couples to the photon via the aγγ vertex. Most experi-
mental searches utilize this coupling as an attempt to detect axions. The vertex
is given by the following term in the Lagrangian,

L ⊃ gaγγ a F F̃ = −4gaγγ aE⃗ · B⃗. (2.30)

When a high-energy photon interacts with the photon coming from an elec-
tromagnetic field, it can produce an axion. This is known as the axion Primakoff-
effect. This process suggests that objects with a high density of energetic photons
in an external electromagnetic field (like dense nuclear medium or plasma) are
potentially strong axion sources. Stars, supernovae, and neutron stars satisfy
these conditions, making them axion emitters. Similarly, the inverse Primakoff-
effect is when an axion decays into photons in a strong magnetic field. The
inverse Primakoff effect is one of the core principles used in indirect detection
experiments. The starting point for computing the probability rates of axion-
photon conversion is the Axion-Maxwell equations, also known as equations
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for axio-electrodynamics in literature. The derivation of these equations can be
found in appendix B. In articles [28, 29], one can find a reasonably exhaustive
and (nearly) up-to-date review of various experiments looking for axions.

2.6.2 Haloscopes
When experiments focus on detecting axion dark matter, they are known as
Haloscopes (named after the fact that we expect to find dark matter in Halos).
The earliest mention of haloscopes can be found in [2–4]. These are the same
articles that were among the first to explore the detection possibility of an "in-
visible" axion by exploiting its interaction with the electromagnetic field.

The primary goal of haloscopes is to detect axions from the Milky Way’s dark
matter halo. The number density of these particles is quite low (even assuming
we have a purely axionic halo). A conceptual setup of an experiment designed
to detect DM axions is shown in fig. (2.5). In such a setup, as the axions enter the
cavity, they can be converted to photons due to the magnetic field. Using this,
we can find a resonance in the frequency, enabling us to determine the mass of
the observed particle.

Figure 2.5: Schematic of a Haloscope. The figure is taken from [28].

The ADMX (Axion Dark Matter eXperiment) [30] is the only current exper-
iment that looks for plausible detection of axionic dark matter. The sensitivity
of this experiment goes to axion masses in the few µeV range. Unfortunately, it
has not detected any signal but has excluded a good amount of parameter space
which can be seen in fig.(2.6).
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Figure 2.6: Axion-Photon coupling parameter space, zoomed in on Haloscope
bounds. The figure is taken from [31].

Another promising experiment proposed in recent years is from the MAD-
MAX (MAgnetized Disk and Mirror Axion eXperiment) collaboration [32]. This
experiment proposes to detect dark matter axions in the mass range of 40-400 µeV
by placing dielectric disks in a magnetic field. These setups are called dielectric
haloscopes, a schematic of such a setup can be seen in fig.(2.7)

Figure 2.7: Schematic of a dielectric haloscope. The figure is taken from [33].
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2.6.3 Light Shining Through Walls (LSW) experiments
An important axion detection experiment is called the "Light Shining Through
Walls" (LSW). In such experiments, powerful lasers are used as an axion source.
The idea is as follows: A powerful laser is shined inside a strong magnetic field,
so a part of the beam converts to axions. Then, a wall is placed in the path of
a beam so that none of the photons but all axions can pass through it. Then,
the axions that pass through the walls are passed through another powerful
magnetic field, partially converting them into photons. If any such photons are
detected on the other side of the partition, then all of these photons need to be
an artifact of axions converting back to photons in the presence of the magnetic
field. A schematic of such experiments is shown in fig.(2.8).

Figure 2.8: Schematic of an LSW experiment. The figure is taken from [28].

Such an event has not been detected yet, giving strong upper bounds on the
gaγγ < 10−8 GeV. As of now, LSW experiments are unable to probe the QCD
axion. The parameter space for LSW experiments can be seen in fig.(2.9).
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Figure 2.9: Excluded parameter space for axion-photon coupling from Halo-
scopes, Helioscopes, and LSW experiments. The figure is taken from [28].

2.6.4 Helioscopes
When axion detection experiments concern the detection of solar axions and
ALPs, these searches are called axion helioscopes (derived from the word Helios,
the ancient Greek word for Sun). Like LSW experiments, ALPs are converted
into photons under a strong magnetic field. Since only one conversion occurs in
helioscopes, they can search for ALPs with weaker couplings. A schematic of
such searches can be seen in fig.(2.10). The parameter range already excluded
by helioscopes can also be seen in fig.(2.9). Future planned helioscopes can test
parts of the QCD axion parameter range.

30



Figure 2.10: Schematic of a Helioscope experiment. The figure is taken from [28].

31



Chapter 3

Production of axion echo

In article [11], the authors propose sending out a powerful beam of microwave
radiation into a region in space where we expect an excellent dark matter den-
sity. The purpose of this signal is to listen to a potential echo by stimulating the
axionic dark matter halo and listening to its echo to detect axion dark matter.
We call the back-decayed signal from such an echo axion gegenschein, and the
forward-decayed signal is called axion forwardschein (In contrast to the litera-
ture, where an axion echo corresponds to a gegenschein signal).

Similar to this idea, several studies like [13, 14, 34] have proposed unique
ways to detect the echo. Instead of sending out a powerful radiation beam, these
studies suggest searching the echo using astrophysical sources that will be the
source providing the electromagnetic signal necessary for the enhanced decay.

3.1 Axion echo from a point source
We take a limit where the axion has a high occupation number. In this scenario,
we can compute the gegenschein intensity by solving the classical field equations
for an axion coupled to the photon [13]. We have a perfectly cold axion fluid
density given by ρ. Let P0 be the power of the electromagnetic wave that enters
this density and produces the axion echo. The power of echo signal P1 is given
by (in natural units),

P1 =
g2ρ

16

[
dP0

dω

]
ω=ma

2

πt (3.1)

which is derived in its full glory in appendix C following [11].
The physical process is such that we get a significant stimulated decay when

the angular frequency of the radiation ωd is equal to half the axion mass ma (in
natural units),

ωd =
ma

2
(3.2)

In SI units, we can deduce the relationship between the frequency of the
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photon νd and the mass of the axion,

hνd =
mac2

2
(3.3)

An alternative formulation of eq.(3.1) is given by,

Sg =
h̄c4

16
(gaγγ)

2 Sν (νd)
∫

dx ρa [r (x)] . (3.4)

Sg is the gegenschein flux density, Sν(νd) is the specific flux density of the source
at frequency νd = ma/4π and the integral is along the axion density [13, 34]. To
compute the forwardschein signal, we choose the axion density column integral
appropriate to the scenario. We will refer to eq.(3.4) as the "central formula"
multiple times to estimate the flux density of axion echo signals.

3.2 Stimulated emission of axions in a photon bath
In the article [12], the authors compute an enhanced photon signal from an
axion density profile due to Bose enhancement. This independent calculation
advocates for stimulated axion decay in the presence of photons. Hence, we
briefly summarize the idea and the main results here.

The decay of an axion with mass ma takes place through the Chiral anomaly
and produces two photons, each with frequency ν = ma/4π. One can express
the lifetime of the axion in terms of its mass and its effective two-photon cou-
pling gaγγ

τa =
64π

m3
ag2

aγγ
(3.5)

Evaluating this value for ma ∼ 1 µeV and coupling near the upper limit
gaγγ ∼ 10−10 eV gives us τ ∼ 1032 years. However, this is a decay rate only
valid in a vacuum. Suppose we assume the axion decay takes place inside a
radiation field. In that case, the photon production rate will be enhanced by
stimulated emission - a phenomenon because photons are indistinguishable and
follow Bose-Einstein statistics. The article calculates the stimulated emission of
axion into two photons. The Boltzmann equation for such a process leads to the
following result,

ṅa ≃ −naΓa (1 + 2 fγ) (3.6)

where na is the number density of axions, Γa is the decay rate of axions, and fγ is
the occupation number of photons. This result is valid in the limit fa ≫ fγ. This
means that the effect of stimulated emission can be incorporated by multiplying
the spontaneous emission rate by a factor of 2 fγ in this limit.
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Chapter 4

Stellar Basins

This chapter is an executive summary of the relevant sections needed from
article [9] for the thesis. Hence, several statements in this section are directly

borrowed from [9]. We have elaborated the arguments and calculations to
various degrees of freedom whenever possible.

In article [9], the author hypothesizes a novel physical phenomenon, which
he summarizes using the following line, "stars can emit massive particles into
bound orbits." Specifically, stellar-produced weakly coupled particles like axions
can enter gravitationally bound orbits around them (depending on their veloci-
ties). While most of the emitted particles are relativistic, a small part of the phase
space allows a tiny fraction of these particles to be bound in these orbits. This
tiny fraction of particles accumulate over the astrophysically large time scales,
effectively forming what the author calls a “Stellar Basin”. The author finds that
after a million years, for any sufficiently long-lived particle (produced through
an emission process whose matrix elements are unsuppressed at low momen-
tum), the energy density of the solar basin of such a particle will surpass the
energy density of the relativistic solar flux. The mere existence of such basins
enhances the success rate of direct and indirect detection searches, helping us
further constrain the parameter space of the respective basin particle. Following
the original article, we will motivate, calculate and summarize the main results
of our interest in forming a basin of solar axions. For convenience, we will break
our calculation into multiple parts, like in the original paper. As an interesting
side note, an earlier mention of gravitationally trapped ALPs accumulating over
cosmic times is discussed in article [35].

A similar calculation for dark photon basins is done in article [36]. Further
developments looking for indirect detection constraints on gaγγ from the Solar
axion basin are done in [37]. An innovative and interesting calculation approach
in computing the basin of gravitationally bound millicharged particles (MCPs)
is taken in [38]. Following a different production channel for axions based on
the Axion Quark Nugget (AQN) dark matter model [39,40], article [41] discusses
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the possibility of gravitationally trapped axions on Earth.

4.1 Idea : Basin Formation
We start by assuming a volumetric-emission process of a weakly interacting
particle with mass m and dQ/dω as the differential energy loss rate per unit
volume per energy. The energy of the emitted particle is give by the famous
ω =

√
m2 + k⃗2 relation. Note that the stellar photon emission process is not vol-

umetric but only through the Star’s surface, which makes the sun a poor photon
emitter (in comparison to the particle/s we are considering). Suppose dQ/dω as
a function of ω in an analytic form or as a dataset is known; the total luminos-
ity for such a process will be given by taking a volume integral over the stellar
interior,

L =
∫

d3R′
∫ ∞

m
dω

dQ
dω

. (4.1)

Here, we take a toy model to illustrate our point (same toy model as in the
paper) as shown in fig.(4.1). The plot shows a differential energy loss rate per
unit volume per energy as an energy function. The solid black line in the fig-
ure corresponds to the dQ/dω rate for a particle of mass m. We are particu-
larly interested in the blue sliver in the figure. The blue sliver corresponds to
m < ω < m(1+ v2

esc/2), which means that the particle has just enough energy to
be produced, but not enough to overcome the escape velocity of the Sun. In gen-
eral stellar energy loss calculations, one computes the integral under the whole
curve; such techniques are used to set stellar cooling constraints on coupling
constants for various BSM particles.

Although these particles (ω ≈ m, |⃗k| ≪ m) contribute to a tiny fraction of
the luminosity, they are the same ones with a high probability of ending up in
bound orbits.

4.2 Calculation : Basin Formation
In this section, we will derive the density of such a basin of particles.

For convenience, we will define a variable ω̃k which denotes kinetic energy per
unit mass in the following way,

ω̃kin ≡ ωkin

m
=

ω − m
m

≈ k⃗2

2m2 . (4.2)

The last approximation comes from the fact that we can safely assume par-
ticles in bound orbits will have non-relativistic velocities, giving us ωkin =

k⃗2/(2m).
For the particles to end up in the basin, we need that the following quantity

is asymptotically negative, Ẽ ≡ ω̃kin + Φ(R), (4.3)
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Figure 4.1: Black curve: A generic differential energy loss rate per unit volume
dQ/dω per energy ω of the emitted particle. The blue sliver represents the
nonrelativistic modes gravitationally bound to the star. The figure and its de-
scription is taken from [9].

where Ẽ is the energy per unit mass, and Φ is the gravitational potential. The
condition Ẽ < 0 gives us ω̃kin < Φ, meaning that the particle doesn’t have
enough kinetic energy to escape from the gravitational potential (everything here
is classical, the only difference being, we are working in energy per unit mass
variables).

The next logical step is to compute P(R, Ẽ), which is the probability density
that a particle with energy Ẽ is found at a radius R. From classical mechanics,
we expect that this quantity is inversely proportional to,

1. The velocity of the particle, which can be written as

v(R, Ẽ) =
√

2[Ẽ − Φ(R)]. (4.4)

Higher velocities make it less likely for a particle to be found at a radius of
R.

2. The square distance R2. This comes from Gauss’s law. The larger the
radius, the larger the surface area of the shell. This contributes to a lower
probability of finding a particle at R.
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This gives the following form for our probability density,

P(R, Ẽ) =
C(Ẽ)

R2v(R, Ẽ)
, (4.5)

where C(Ẽ) is a normalization constant. This constant is fixed by requiring the
normalization condition

∫
d3R P(R, Ẽ) = 1. For a gravitational potential of the

form Φ(R) ≃ −GM⋆/R, one finds the following form for the constant,

C(Ẽ) ≃ 1√
2π

(−Ẽ)
3
2

GM⋆
. (4.6)

This formalism is a good approximation for particles having orbits R ≫ R⋆,
where R⋆ is the radius of the stellar body around which the basin is being
formed.

We can now define the injection rate at which the particles enter bound orbits,
populating the basin. We define the injection rate in terms of the bound energy
density. At R ≥ R⋆ the bound energy injection rate is given by the following
expression,

ρ̇bound(R) =
∫

d3R′
∫ 0

Φ(R)
dẼ

dQ
dω̃k

P(R, Ẽ). (4.7)

Eq.(4.7) comes from the fact that the energy density injection rate is equal to the
volumetric integral over the interior of our stellar body, integrated over all the
possible bound energies (of the differential energy loss rate), times the probabil-
ity density P defined in eq.(4.5) and (4.6).

In order to make any further estimate on ρbound we need an expression for
dQ/dω̃k. By definition, this term depends on the process we are considering.
Although, there is enough evidence in literature such that we could generalize
this term to leading order in series as,

dQ
dω̃k

= ∑
p

Q̃p(R′)ω̃
np/2
k (4.8)

where np ∈ Z+, the sum over p makes sure that you include all the produc-
tion processes for the particle in interest contributing to the term, Q̃p is used to
extract the energy dependence such that it only depends on the stellar interior
radius R′ < R⋆ (where a spherical symmetry has been assumed for the system).
To motivate eq.(4.8), we can look at a quick generic example where the matrix
element remains constant in the soft limit, i.e. |M|2 ≃ const as k⃗ → 0. The main
purpose of this illustration is to see that for such a process; one can reach the
form of eq.(4.8) when np = 1. As we are assuming a constant matrix element, a
good starting point is to see how the integral over momentum fares,∫ d3k

(2π)3 =
1

(2π)3

∫
k2dkdΩ =

4π

(2π)3

∫
k (kdk). (4.9)

37



We want to make a change of variables from k → ω̃k. We can start from the
non-relativistic approximation for ω̃k,

ω̃k =
k2

2m2 (4.10)

k =
√

2ω̃km2, (4.11)

and
dω̃k
dk

=
k

m2 (4.12)

kdk = m2dω̃k, (4.13)

which we can plug into eq.(4.9) to get,∫ d3k
(2π)3 =

1
2π2

∫ √
2ω̃km2m2dω̃k (4.14)

=
m3

√
2π2

∫ √
ωkdω̃k. (4.15)

From here, we can see that such processes give rates equivalent to eq.(4.8)
for np = 1. We will see later that these np = 1 processes fill the stellar basin
effectively.

Now, we will plug in eq.(4.4), (4.5), and (4.8), in eq. (4.7), which give us the
following expression for the bound energy density injection rate (at R ≥ R⋆),

ρ̇bound(R) = ∑
p

∫
d3R′

∫ 0

Φ(R)
dẼ

Q̃p(R′)
R2

C(Ẽ)√
2

[Ẽ − Φ(R′)]
np
2

[Ẽ − Φ(R)]
1
2

. (4.16)

We can safely approximate Ẽ − Φ(R′) ≃ −Φ(R′) when R ≫ R⋆ (where R⋆ =
max R′). Plugging in eq.(4.6) with this approximation, we can derive the bound
energy injection rate,

ρ̇bound =
1

2π2R2 GM⋆
∑
p

∫
d3R′Q̃p(R′)

∣∣Φ(R′)
∣∣ np

2

∫ 0

Φ(R)
dẼ

(−Ẽ)
3
2

[Ẽ − Φ(R)]
1
2

, (4.17)

where the integral over Ẽ converges if Φ(R) < 0. Plugging in the result of the
integral and substituting Φ(R) ≃ GM⋆/R (which satisfies Φ(R) < 0), we get the
final equation,

ρ̇bound(R) =
3

16π

GM⋆

R4

∫
d3R′ ∑

p
Q̃p(R′)

∣∣Φ(R′)
∣∣ np

2 . (4.18)

Apart from the emission process itself, we can see that the bound energy in-
jection rate drops as R4. We will use this fact multiple times in the chapter 5
when the axion basin density is used to compute prospective detection rates
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from basins of various compact stellar objects.

4.3 Solar Axion Basin
We have established a generic formalism to form stellar basins in section 4.2.
Using that formalism, we compute the stellar axion basin for our sun in the
following section. The result of this section is fig.(4.4), which is extremely crucial
for chapter 5. Again, following the original article [9], we will compute the basin
density for axions produced by the sun using axion-bremsstrahlung and axion-
Compton emission processes.

For a general emission process of a weakly coupled boson with four-momentum
k = (ω, k⃗), the net energy loss rate per unit volume is,

Q =
1

(2π)3

∫ d3k
2

∫
dPin

∫
dPout

∣∣M∣∣2 (2π)4 δ4 (Pin − Pout − k) F. (4.19)

Using the above equation, we want to compute Q̃p, where p stands for the pro-
cess. We do this by massaging eq.(4.19) for different processes into eq.(4.8). This
enables us to substitute Q̃p for a process p into eq.(4.18) computes the bound
energy injection rate.

4.3.1 Process 1 : Axion-Bremsstrahlung
Fig.(4.2) sketches the Feynman diagram for axion bremsstrahlung,

e−(p1) + Zj(p2) → e−(p3) + Zj(p4) + a(k). (4.20)

Figure 4.2: Feynman diagram for Axion-Bremsstrahlung.

The production results from electron collisions with nuclear ions of charges
Zj and masses mj. The squared matrix element in the soft limit is given by,

∣∣MB,j
∣∣2 =

Z2
j e4g2

aee

q⃗2 + κ2
s

4m2
j

m2
e

(4.21)
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where the κ = 4πα(n̄N + ne)/T term accounts for the screening effects (Debye
Hueckel scale). q⃗ ≡ p⃗2 − p⃗4 takes care of the momentum transfer. We can make
the following approximations,

• In stars like our Sun, the occupation of ions is low f2, f4 ≪ 1.

• The ions can are considered extremely heavy compared to the electrons,
using which we can ignore any nuclear recoil.

Finally, plugging our matrix element into eq.(4.19) and after simplifying (entire
simplification calculation is done in appendix D - we get an answer up to a factor
of four compared to the author’s result), this integral looks like the following (we
use the author’s results),

dQB

d3k
=

nNe4gaee

256π6m2
e

∫ ∞

m
dωp f1(1 − f3) ln

(
2 + 2

√
1 − ϵ − ϵ + ξ

ϵ + ξ

)
. (4.22)

In the above equation, ωp ≡ p⃗1
2/2me is the kinetic energy of the incoming

electron. ϵ ≡ m/ωp is the ratio of the axion mass over the available kinetic
energy in the electron. Finally, ξ := κ2

s /2meωp is a dimensionless screening
measure.

At this point, we can consider two conditions. When the electrons are degen-
erate and non-degenerate. In the solar plasma, the electrons are degenerate as
ne ≪ (meT)

3
2 . This means we can safely ignore Pauli blocking. We can approx-

imate this to f3 ≃ 0. This means the only distribution factor that contributes in
eq.(4.22) is f1( p⃗1). Under these conditions specified, we can approximate f1( p⃗1)
by a Maxwell-Boltzmann distribution,

f1( p⃗) ≃ ne

(
2π

meT

) 3
2

e−ωp/T. (4.23)

After converting from a k⃗ integral to ω̃ integral using eq.(4.15) and using f1( p⃗),
we get an expression in the form of eq.(4.8) where,

Q̃B ≃ α2g2
aee

2π3/2
n̄Nnem3

m7/2
e T1/2

∫ 1

0
dϵ

ln 2+2
√

1−ϵ−ϵ+ξ
ϵ+ξ

exp
{ m

ϵT
} . (4.24)

The integral can be evaluated numerically (or an alternative empirical formula
is provided in [9]). An important point to emphasize is that another similar
channel that could produce axions is given by axion-electron bremsstrahlung.
The result is the same as axion-ion bremsstrahlung when nN → ne/

√
2 [42].

Finally, one can compute the volume integral over a standard solar model
(author uses the solar model from [43]), by substituting Q̃B from eq.(4.24) into
eq.(4.18). Golden curves in fig.(4.4) correspond to the contribution of electron-
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ion bremsstrahlung to the local axion basin energy density ρ as a function of the
mass of the axion (The volumetric integral depends on chosen axion mass).

4.3.2 Process 2 : Axion-Compton scattering
If we consider higher axion masses, i.e., significantly above the temperature (and
plasma frequency of the sun), the axion-Compton process

γ(pγ) + e−(p1) → e−(p2) + a(k) (4.25)

as shown in fig.(4.3) is the dominant axion production channel.

Figure 4.3: Feynman diagram for axion-Compton scattering process.

For the axion-Compton process, the squared matrix element in the soft limit
is given by,

|MC| ≃
e2g2

aeem2

m2
e

. (4.26)

Similar to calculation of Q̃B in section 4.3.1 and computation in appendix D, the
author finds,

Q̃c ≃
αg2

aee

2
2
3 π2

ne

m4
e

m5
√

m2 − ωpl2

e
m
T −1

(4.27)

where the variables correspond to the same quantities as in the case for axion-
bremsstrahlung. ωpl = 4παne/me corresponds to the plasma frequency such
that Eγ = ω2

pl + p2
γ. This process is kinematically allowed only when m > ωpl.

Plugging eq.(4.27) into eq.(4.18) and computing the integral over the standard
solar model, we get the red curves corresponding to the contribution of axion-
Compton processes to the local axion basin energy density.
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Figure 4.4: Axion energy density at Earth’s surface from the solar basin denoted
ρb, plotted as a function of axion mass m, and gaee = 3 × 10−13. The relativistic
solar flux is denoted by ρ∞. The axion energy density is plotted for conservative,
fiducial and optimistic basin lifetimes corresponding to 107, 108 and 4.5 × 109

years, respectively. Golden curves correspond to contribution to the basin den-
sity from axion-bremsstrahlung, and the red curves correspond to contribution
from axion-Compton scattering. The figure and its description is taken from [9].

For our computations in the upcoming chapters, we use the local axion
energy density in the fiducial limit produced from axion-bremsstrahlung and
axion-Compton processes, i.e., the solid black curve plotted in fig.(4.4).
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Chapter 5

Axion Basinschein

This chapter and the following one focus on the original research done in this
thesis. Simply speaking, we combine the primary ideas from the two previous
chapters :

• Chapter 3: In the axion rest-frame, an axion decays into two photons, each
with an energy equal to half the axion mass. When an electromagnetic
wave is already present at this energy, the decay rate is enhanced [34].

• Chapter 4: Stars can emit massive particles into bound orbits. These par-
ticles can form a density profile called the stellar basin around the star.
Axions produced in the sun via axion-bremsstrahlung and Compton pro-
cesses form a solar axion basin around the sun. Energy densities of this
basin exceed those of the relativistic unbound solar axion flux [9].

By combining these two ideas, we estimate whether the detection of an echo
signal is possible from the solar axion basin. The sun emits electromagnetic
waves/photons over a spectrum of energy. From eq. (3.3), we understand that
a stimulated decay occurs when the electromagnetic wave "exciting" the axion
is precisely half of its mass (in natural units). From fig. (4.4), we can see that
the energy density of the solar axion basin is varied as a function of its mass. If
we consider electromagnetic waves/photons from the sun from different parts
of the spectrum, we can estimate the echo signal from axion basins of a varied
mass range. By this, we mean that the entire basin has the same axion mass,
but we scan over different mass basins. We review basins made of varied axion
masses because, at some masses, we have a higher energy density from the
axion basin. At other masses, the intensity of the stimulating light is higher.
We do a reasonably exhaustive search over various combinations of these two
parameters.

Furthermore, we extend this exact idea to estimate (up to a zeroth order)
the echo signal from the potential axion basins of other astrophysical compact
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objects such as White Dwarf (WD) and Neutron Stars (NS). In this case, the elec-
tromagnetic waves that stimulate the axions will be either the compact objects
themselves or a potential accretion disk around them.

The following table summarizes all the scenarios considered in this and the
next chapter.

Axion Source Stimulating source Stimulating Frequency Detecting instrument Section
Sun Soft X-Ray (Quiet sun) Chandra 5.1.1.1
Sun Soft X-Ray (Flared Sun) Chandra 5.1.1.2
Sun Ultraviolet Hubble 5.2.1
Sun Optical Hubble 5.2.2

Solar basin

Sun Infrared Hubble 5.2.3
White dwarf basin White dwarf Soft X Ray Chandra 5.1.2
Neutron star basin Neutron Star Soft X Ray Chandra 5.1.3

O-star basin O-Star Soft X Ray Chandra 5.3
Milky Way’s dark matter halo Sun Optical Hubble NUV (CCD) 6.1

Average cosmological +
dwarf galaxy + Milky Way’s dark matter density Radio galaxy Radio FAST 6.2

Table 5.1: Summary of all basinschein and haloschein scenarios estimated in
chapter 5 and 6.

We perform calculations in the CGS unit system. Each computation’s final
results are presented in CGS and SI units. The numerical estimates, integrals,
and generation of plots have been performed in Mathematica. While computing
results in Mathematica, proper care has been taken to ensure correct units are
being used.

Throughout this chapter and the following one, the axion-photon coupling is
assumed to be the highest limit given in [44],

gaγγ = 6.6 × 10−11 GeV−1 (5.1)

5.1 keV Axion Basinschein
5.1.1 keV solar axion basin
We compute the basinschein intensity from the solar axion basin by using the
X-Ray spectra of the sun as our stimulating source. We assume a solar axion
basin as discussed in section (4.3). From fig (4.4), the axion basin density can be
read to be maximized when the axion mass corresponds to 3 keV (in the fiducial
limit). This corresponds to a local axion density of ρ0 = 10−4 GeV/cm3 at 1 AU.
We compute two quantities - echo signal (gegenschein) and signal that comes
towards us directly from the sun (forwardschein). Using our central formula for
such calculations eq.(3.4),

S f =
h̄c4

16
(gaγγ)

2 Sν (νd)
∫ 1 AU

R∗
dx ρa [r (x)]︸ ︷︷ ︸

8.836×10−9 g/cm2

, (5.2)
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Sg =
h̄c4

16
(gaγγ)

2 Sν (νd)
∫ ∞

1 AU
dx ρa [r (x)]︸ ︷︷ ︸

8.889×10−16 g/cm2

. (5.3)

where we have numerically integrated the column width corresponding to the
number in the brace. The integrand is given by ρa[r(x)] = ρ0r−4. The difference
between the two formulas is the integration bounds. The bounds have been
changed to represent the appropriate axion column. We will denote this integral
by ρint and call it integrated axion density. For forwardschein, we take the integral
over the axion basin density from the sun’s surface to the Earth’s surface. For
the gegenschein signal, we use a column of solar axion from a Basin-Earth-Sun
sequence. We let this integral go out to infinity, as the r−4 dependence of the
density will ensure it converges fairly before infinity. This integration takes
care of the fact that axion densities in these respective columns are significantly
varied.

We now estimate numerical values for the forwardschein S f , and gegenschein
Sg signal, by plugging in the appropriate values for the specific intensity Sν (νd)
responsible for the stimulated decay. We will use maximized values to overesti-
mate our signal, i.e., to get an upper bound estimate from our calculations. For
a basin consisting of axions of ma = 3 keV, the stimulating frequency is given
by,

ν(ma = 3 keV) =
mac2

2h
(5.4)

= 3.628 × 1017 Hz (5.5)
λ(ma = 3 keV) = 0.826 nm (5.6)

In this case, the energy of our stimulating corresponds to Eγ ≈ 1.5 keV. This is
the same energy we expect for the basinschein photons we want to detect.

For the keV basin, we consider two cases for the corresponding X-ray sources
from our sun.

5.1.1.1 Case I : Quiet Sun

At this wavelength, we have S = 1 × 10−8 W m−2 in the range λ ∈ [0.1, 0.8] nm
[45]. Assuming that solar flux at λ(ma = 3 keV) = 0.826 nm is approximately
similar to S(λ = 0.8 nm), we have

Sν (λ = 0.8 nm) = Sν(ν = 3.63 × 1017 Hz) = 3.81 × 10−24 g s−2 (5.7)
= 0.381 Jy (5.8)

= 3.81 × 10−27 W m−2 Hz−1 (5.9)
(5.10)

Using the above value for our solar flux in eq.(5.2) and (5.3), we get the
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following values for forwardschein and gegenschein flux,

S f = 3.04 × 10−36 W m−2, (5.11)

Sg = 3.06 × 10−43 W m−2. (5.12)

5.1.1.2 Case II : Solar Flares

We now consider the stimulating flux from the sun during solar flares. We
used an extreme solar flare event, as shown in fig.(5.1). Other extreme solar
flare events can be found in [46]. Focusing on the top panel of this figure, we
can deduce that approximately between 0730 and 8000 hours UTC, there is an
X-flare event for several minutes, corresponding to,

S = 2 × 10−3 W m−2. (5.13)

Although, later, when we assume the timescale of such a flare, we assume it to
last for several hours, which will be an overestimate. Even in such an extreme
overestimate, we will see that the number of forwardschein photons we expect
to receive is significantly low.

Assuming a constant contribution from this flux in the bin corresponding to
ν ∈ [0.1, 0.8] nm, we get

Sν(λ = 0.8 nm) = 7.624 × 10−19 g s−2 (5.14)
= 76240 Jy (5.15)

= 7.624 × 10−22 W m−2 Hz−1. (5.16)

We estimate the forwardschein and gegenschein flux from the 3 keV solar
axion basin,

S f = 6.09 × 10−31 W m−2, (5.17)

Sg = 6.12 × 10−38 W m−2 (5.18)
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Figure 5.1: An extreme solar flare X-ray event in frequency ν ∈ [0.1, 0.8] nm
recorded on 6 Sept 2005. The figure is taken from [46].

5.1.2 Axion forwardschein from a white dwarf basin
As mentioned in the introduction to this chapter, we extend our idea for basin-
schein to other stellar compact objects. This section computes a forwardschein
flux from a white dwarf axion basin. As a zeroth order estimate, we assume the
axion basin is similar to the sun, i.e., it has the same energy density at 1 AU as in
the fig.(4.4). Similar to sec. 5.1.1, we consider a basin consisting of 3 keV axions.
The axion density profile is similar to the sun, yet we will significantly boost the
integrated axion density as the white dwarf has a substantially smaller radius
than the sun. Our axion density scales as the radius to the negative power of
four; this gives us a tremendous boost as the integral ρint bound goes up to the
surface of the white dwarf. Unfortunately, we will see that the stimulating flux
Sν(λ = 0.8 nm) is much weaker than the sun.

Using our central formula eq.(3.4),

S f WD =
h̄c4

16
(gaγγ)

2 SνWD (νd)
∫ ∞

RWD

dx ρa [r (x)]︸ ︷︷ ︸
ρint=0.173 g/cm2

(5.19)

The upper bound of this integral goes till infinity, as the contribution from
ρa [r (x)] ∼ r−4 will nullify rapidly after a certain point, and barely contribute to
ρint. As expected, the ρint quoted in eq. (5.19) orders of magnitude greater than
the sun.
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To get a strong source that will stimulate the decay, we consider a basin of a
WD X-ray binary like KPD 0005+5106, which is active in the X-ray spectrum. The
radius of the WD is RWD = 0.006 R⊙ and it’s distance to Earth is 1300 ly [47,48].
The flux in the range Eγ ∈ [0.6, 3] keV is,

S = 2.05 × 10−16 W m−2. (5.20)

Assuming a constant flux throughout the range, we get the flux density as,

SνWD(λ = 0.8 nm) = 5.63 × 10−32 g s−2 (5.21)

= 5.63 × 10−9 Jy (5.22)

= 5.63 × 10−35 W m−2 Hz−1 (5.23)

Plugging this in Eq.(5.19), we get the forwardschein irradiance as

S f WD = 8.78 × 10−38 W m−2 (5.24)

5.1.3 Axion forwardschein from a neutron star axion basin
In this section, we perform an estimation similar to the previous section on a
neutron star instead of a white dwarf. The radius of a neutron star is at least a
few orders smaller than a white dwarf, giving us an even stronger contribution
to the integrated column density. The energy density of the axion basin is again
assumed similar to the sun to a zeroth order. We take the radius of the neutron
star to be RNS = 10 km.

S f NS =
h̄c4

16
(gaγγ)

2 SνNS (νd)
∫ ∞

RNS

dx ρa [r (x)]︸ ︷︷ ︸
ρint=2.98×106 g/cm2

(5.25)

By taking a typical radius of a neutron star, we see ρint got a tremendous boost
compared to our previous scenarios. Unfortunately, as we will see below, the
SνNS (νd) is especially poor, which effectively cancels out this boost. Neutron
stars are weak at producing photons. Furthermore, most are orders of magni-
tude further away from Earth than the sun.

For SνNS we use the flux density from X-ray binary GX 17+2 [49]. It estimates
that the BeppoSAX telescope captures approximately one photon per centime-
ter squared, per second, per keV from GX 17+2. While computing prospective
forwardschein photon numbers in section 5.1.4, we assume that we are getting
the same count as in [49], but for Chandra X-ray observatory, which has a bet-
ter effective area than BeppoSAX telescope. We convert this photon count to a
specific intensity,

SνNS = (1 photon cm−2 s−1 keV−1)× h̄ × 3 keV (5.26)

= 1.58 × 10−28 g s−2 (5.27)
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= 1.58 × 10−6 Jy (5.28)

= 1.58 × 10−31 W m−2 Hz−1 (5.29)
(5.30)

Plugging this in eq.(5.19), we get the forwardschein flux as

S f NS = 4.25 × 10−26 W m−2 (5.31)

5.1.4 Projected photon numbers
We use the Chandra X-ray observatory to estimate the photon numbers from
the above measurements. Compared to radio or optical wavelength astronomy,
where it primarily makes sense to talk about the flux of the received signal, the
X-ray domain talks about photon numbers from the received signal. An integer
number of X-ray photons detected over reasonable exposure time suffices as a
measurable signal [50].

The effective area for the mirror on Chandra is Aeff = 800 cm2 in 0.5-2 keV
energy range [51]. This is our range of interest as λ ∈ [0.1, 0.8]nm corresponds
to photon energies in Eγ ∈ [1.5, 13]keV. We see that even with an optimistic
constant area of 800 cm2, we get a poor photon number for all the cases that we
covered in sections 5.1.1, 5.1.2, and 5.1.3.

The results are summarised in the following table :

Axion Source Photon energy (keV) Total photons
Nγtot

Forwardschein photons
NγFS

Gegenschein photons
NγGS

Quiet Sun (5.1.1.1) 1.5 1.39 × 109 3.65 × 10−16 3.67 × 10−23

Solar Flares (5.1.1.2) 1.5 2.78 × 1013 6.57 × 10−11 7.34 × 10−19

White Dwarf (5.1.2) 1.5 16.39 8.41 × 10−18 NA
Neutron Star (5.1.3) 1.5 57600 5.1 × 10−6 NA

Table 5.2: Summary of keV basinschein photons estimated by Chandra X-ray
observatory from axion basins of the sun, a white dwarf and a neutron star.

where the following formulas are used to compute the photon numbers,

Nγtot =
Sν × Tobs × Aeff

Eγ
× (binwidth) (5.32)

NγFS =
S f × Tobs × Aeff

Eγ
(5.33)

NγGS =
Sg × Tobs × Aeff

Eγ
. (5.34)

The binwidth factor in Nγtot comes because we are measuring signal from a con-
tinuum. In contrast, for forwardschein or gegenschein, we look for a signal
peaked around a particular frequency (Also, a good check for the necessity of
that factor is by realizing that Sν and S f differ in units by a factor of Hz). The
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exposure time Tobs is taken to be 100 h, except for the case of solar flares where
we take Tobs = 10 h as an overestimate.

Conclusion
We can see from table.(5.2) that none of the forwardschein or gegenschein pho-
ton numbers are anywhere close to an integer number, which, as we discussed
earlier, corresponds to a measurable signal. The closest we get to an integer num-
ber is in the case of a forwardschein from a neutron star basin. In the future,
if any rigorous neutron star basin calculation estimates to have an exceptionally
high axion basin density than what we considered here, we could potentially get
a measurable signal.

5.2 Solar Axion Basinschein
This section calculates the prospective forwardschein signal from the solar axion
basin analogous to section 5.1.1. The difference is that we look at other possible
masses instead of assuming 3 keV axions in the basin. Different mass scales
mean we need solar flux at different wavelengths to stimulate axion decay. For a
given axion mass, we know the corresponding frequency of photon required to
facilitate the decay by eq.(3.3). The axion density needed for the basin at those
corresponding masses can be extracted from fig.(4.4).

To compute the gegenschein/forwardschein from the solar basin, we need
the specific intensity of our sun at various wavelengths. These values can be
extracted from the following plot,
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Figure 5.2: Spectrum of solar radiation. The figure is taken from [52].
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5.2.1 Solar basinschein : Ultraviolet (UV)
We start by looking at the UV range of the sun. Assuming the axion density to
be stimulated by photons of wavelength λUV = 325 nm, the axions should be
made up of mass maUV = 7.63 eV using eq.(3.3). From the fig.(4.4), we can see
that this corresponds to a local axion density of ρa = 5 × 10−10 GeV cm−3. From
fig.(5.2), we can see that,

Sλ (λUV) = 0.75 W m−2 nm−1 (5.35)

We convert this into units per frequency instead of per wavelength using the
following formula

Sν

Sλ
=

λ2

c
(5.36)

Rearranging and plugging in the appropriate values,

Sν (λUV) =
(325 nm)2

c
Sλ (5.37)

= 2.64 × 10−13 W m−2 Hz−1 (5.38)

= 2.64 × 1013 Jy (5.39)

Using our central formula for these calculations eq.(3.4), we get,

S f (λUV) =
h̄c4

16
(gaγγ)

2 Sν (λUV)
∫ 1 AU

R∗
dx ρa [r (x)]︸ ︷︷ ︸

4.41×10−14 g/cm2

(5.40)

= 1.05 × 10−27 W m−2 (5.41)

Sg (λUV) =
h̄c4

16
(gaγγ)

2 Sν (λUV)
∫ ∞

1 AU
dx ρa [r (x)]︸ ︷︷ ︸

4.44×10−21 g/cm2

(5.42)

= 1.06 × 10−34 W m−2 (5.43)

Flux ratio We want to compute the flux ratio ΦR for our forwardschein signal
versus the regular UV signal from the sun at λUV. For the regular flux received
from the sun, we need to know the spectral resolution of our telescope. In this
scenario, we use the Near UltraViolet channel (NUV) of the Cosmic Origins
Spectrograph (COS) on HST. It has a spectral resolving power (R = λ/∆λ) of
RNUV = 2000 [53] giving us,

binwidthNUV(λUV) =
ma (λUV)

2 h̄
1

RNUV
= 2.90 × 1012 s−1 (5.44)

ΦR (λUV) =
S f (λUV)

Sν (λUV)× binwidthNUV(λUV)
= 1.38 × 10−26 (5.45)
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5.2.2 Solar basinschein : Optical (OP)
The sun is most active in the optical range. Here, we assume the axion density
to be stimulated by photons of wavelength λOP = 500 nm. Hence, the cor-
responding axion density needs to be assumed to be made of axions of mass
maOP = 4.96 eV using eq.(3.3). From fig.(4.4), we extrapolate that this corre-
sponds to a local axion density of ρa = 7.5 × 10−11 GeV cm−3. From fig. (5.2),

Sλ (λOP) = 1.75 W m−2 nm−1 (5.46)

Converting Sλ to Sν,

Sν (λOP) =
(500 nm)2

c
Sλ (5.47)

= 1.46 × 10−12 W m−2 Hz−1 (5.48)

= 1.45 × 1014 Jy (5.49)

Using our central formula for these calculations eq.(3.4), we get,

S f (λOP) =
h̄c4

16
(gaγγ)

2 Sν (λOP)
∫ 1 AU

R∗
dx ρa [r (x)]︸ ︷︷ ︸

6.63×10−15 g/cm2

(5.50)

= 8.74 × 10−28 W m−2 (5.51)

Sg(λOP) =
h̄c4

16
(gaγγ)

2 Sν (λOP)
∫ ∞

1 AU
dx ρa [r (x)]︸ ︷︷ ︸

6.67×10−22 g/cm2

(5.52)

= 8.79 × 10−35 W m−2 (5.53)

Flux-ratio We compute the flux ratio for our forwardschein signal versus the
regular optical signal from the sun at λOP. For the regular flux received from the
sun, we need to know the spectral resolution of our telescope detector. In this
scenario, we use the CCD first-order spectroscopy grating G430L of the STIS on
HST. It has a spectral resolving power of RG430L ≈ 1000 [53], giving us,

binwidthNUV(λOP) =
ma (λOP)

2 h̄
1

RG430L
= 3.77 × 1012 s−1 (5.54)

ΦR (λOP) =
S f (λOP)

Sν (λOP)× binwidthNUV(λOP)
= 1.59 × 10−28 (5.55)

5.2.3 Solar basinschein : Infrared (IR)
Finally, we consider the infrared range of the sun as the stimulating source.
Assuming that we want the axion density to be stimulated by photons of
wavelength λIR = 1500 nm, the axion density would be made up of mass
maUV = 1.65 eV using eq.(3.3). From fig.(4.4), we extrapolate that this corre-
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sponds to a local axion density of ρa = 7.5 × 10−11 GeV cm−3.
From fig.(5.2) we read,

Sλ (λIR) = 0.3 W m−2 nm−1 (5.56)

Converting Sλ to Sν,

Sν (λIR) =
(1500 nm)2

c
Sλ (5.57)

= 2.25 × 10−12 W m−2 Hz−1 (5.58)

= 2.25 × 1014 Jy (5.59)

We use our central formula for the forwardschein, which gives us,

S f (λIR) =
h̄c4

16
(gaγγ)

2 Sν (λIR)
∫ 1 AU

R∗
dx ρa [r (x)]︸ ︷︷ ︸

2.65×10−16 g cm−2

(5.60)

= 1.05 × 10−27 W m−2 (5.61)

Sg(λIR) =
h̄c4

16
(gaγγ)

2 Sν (λIR)
∫ ∞

1 AU
dx ρa [r (x)]︸ ︷︷ ︸

2.66×10−23 g/cm2

(5.62)

= 5.42 × 10−36 W m−2 (5.63)

Flux-ratio We want to compute the flux ratio ΦR for our forwardschein signal
versus the regular optical signal from the sun at λIR. For the regular flux received
from the sun, we need to know the spectral resolution of our telescope detector.
In this scenario, we use the CCD first-order spectroscopy grating G750L of the
STIS on HST. It has a spectral resolving power of RG750L ≈ 1000 [53], giving us,

binwidthNUV(λIR) =
ma (λIR)

2 h̄
1

RG750L
= 1.25 × 1012 s−1 (5.64)

ΦR (λIR) =
S f (λIR)

Sν (λIR)× binwidthNUV(λIR)
= 1.91 × 10−29 (5.65)

Conclusion
All of the forwardschein and gegenschein estimates S f ,g(λUV, λOP, λOP) and the
flux ratios ΦR(λUV, λOP, λOP) are orders of magnitude away from measurable
signals. There is no possibility of detection of basinschein signals from all the
scenarios considered in the chapter above.

5.3 O-star forwardschein estimate
The basinschein flux depends upon the flux density. We assume a basin density
like fig.(4.4) around a hypothetical O-star, which has a higher flux density than
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our sun.
Using Planck’s radiation law,

Sλ(λ, T) =
2πhc2

λ5e
hc

λkBT − 1
(5.66)

we can compare the blackbody spectrum of an O-star with a temperature of
50000 K with our sun, which has a surface temperature of T = 6000 K.

Figure 5.3: Top: Flux density of sun versus an O-star (T = 50000 K) in the
wavelength λ ∈ [0, 500]nm. Bottom: Flux density of sun versus an O-star in the
wavelength λ ∈ [0, 1500]nm

Conclusion
We can see that we get a few orders of magnitude boost in Sν across all the
wavelengths we considered in the previous sections. This boost, unfortunately,
does not overcome the fact that we still end up with a meager flux ratio. It would
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be as large as a few orders of magnitude in comparison to eq.(5.45), (5.55), (5.65),
which is still extremely low to be detected.
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Chapter 6

Axion Haloschein

This chapter computes the axion echo from the Milky Way’s dark matter halo.
We assume that the entire halo is made out of axions.

We preserve the units on numerical values borrowed from sources. We per-
form calculations in the CGS unit system. Each computation’s final results are
presented in CGS and SI units. The numerical estimates, integrals, and genera-
tion of plots have been performed in Mathematica. While computing results in
Mathematica, proper care has been taken to ensure correct units are being used.

As discussed earlier, we need our dark matter halo’s density profile to com-
pute the axion echo signal. We use a standard Milky Way’s Navarro-Frenk-White
(NFW) profile halo [13], given by the following equation,

ρMW (r) =
ρ0

(r/rs) (1 + r/rs)
2 , (6.1)

where r is the galactocentric radius and rs = 16 kpc the scale radius.
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Milky Way's NFW profile

Figure 6.1: Milky Way’s DM halo density modeled using the NFW profile

The local density ρ0 at the solar position r⊙ = 8.22 kpc is ρ(r⊙) = 0.46 GeV cm−3.
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In fig.(6.1) we plot eq.(6.1) as a function of the galactocentric radius.
Next, we compute the integrated DM column density, i.e., ρint. To do this, we

define a few variables, such as

rcol(x, θ) =
√

x̃2 + r2
⊙ − 2x̃r⊙ cos θs, (6.2)

where x̃, r, θs, r⊙ are defined in fig.(6.2).

Figure 6.2: Schematic for gegenschein geometry from the Milky Way’s DM halo.
The figure is inspired from [34]

By plugging rcol into ρMW, we compute the DM density of the NFW halo
along line of sight from our perspective. The line of sight will be defined by an
angle θs. After choosing a θs, we then integrate over x̃ to get the DM integrated
column density along that line of sight. As shown in the figure, we choose our
integral at an angle of θs = π/2. We can then perform an integral over x̃ from 0
to ∞ (As we can see in fig.(6.1), most of our DM density comes from the first few
kilo-parsecs, and then it decreases rapidly). Integrating numerically estimates
the integrated axion density in this scenario to be,

ρint =
∫ x̃=∞

x̃=0
ρ
(

rcol

(
x̃,

π

2

))
dx̃ = 0.0323 g cm−2. (6.3)

This integrated axion density is overestimated as the DM halo will have a
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transverse velocity dispersion that will smear out the gegenschein signal. Other
effects like doppler broadening will also weaken our signal (we did integrate
x̃ up to infinity, which to some extent also contributes to the overestimate). A
more general geometry of gegenschein calculation by considering the effects
mentioned above is explained brilliantly in section II.B of [13]. We work with
our overestimated value of the ρint as a zeroth order estimate. As we will see,
even in this exaggerated scenario, the gegenschein signal is extremely low.

6.1 Axion Haloschein from the solar optical band
We compute axion gegenschein from the Milky Way’s dark matter halo in the
range where the sun provides us with the highest electromagnetic flux, i.e., at
λ = 500 nm. The assumed mass of the axions in the halo is computed by
eq.(3.3) which gives us ma = 4.95 eV. We know that mass is slightly above the
current bounds on DM axions. Nevertheless, the computation was performed
to get an order of magnitude estimate on the gegenschein signal. In the case of
an optimistic gegenschein signal, we would have moved to a halo made out of
lower mass axions. This won’t be necessary as we already mentioned that we
find a feeble gegenschein signal.

We compute the gegenschein signal using eq.(3.4),

Sg =
h̄c4

16
(gaγγ)

2 Sν (νd)
∫

dx ρa [r (x)]︸ ︷︷ ︸
ρint=0.0323 g/cm2

(6.4)

= 4.23 × 10−12 g s−3 (6.5)

= 4.23 × 10−15 W m−2, (6.6)

where ρint is taken from eq.(6.3). We used Sν (λ = 500 nm) = 1.45 × 1014 Jy
from eq.(5.49).

Signal to Noise Ratio (SNR)
We compute the gegenschein signal’s SNR using Hubble Space Telescope’s (HST)
Space Telescope Imaging Spectrograph (STIS). First, we calculate the SNR ana-
lytically. Ignoring all background noise to get an upper bound for the signal, we
have our SNR formula [54],

SNR =
Sc

N
=

Sc√
Sc + Npix DCc

, (6.7)

where Sc is the source counts, Npix is the number of pixels used for detection
and DCc is the Dark Current count. A good explanation of dark currents and
their role in CCD detection is explained in appendix E. In the same appendix,
we explain why DCc can’t be nullified while estimating an upper bound for SNR
(unlike the background noise, which is assumed to be null while computing the
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upper bound). We take DC = 0.029 per pixel per second [55]. This gives us
DCc = DC · te where te is the exposure time. We need Sc to calculate the SNR.
We estimate the source count using the following formula,

Sc =
Sg × te × Aeff

h (c/λ)
× 1

4π
×
(

θaperture

Npix

)2

︸ ︷︷ ︸
Geometical factor

, (6.8)

where,

• Sc is the photon counts per pixel

• Sg is the flux of gegenschein signal

• te is the exposure time

• Aeff is the effective collecting area

•
(
θaperture

)2 gives the field of view angle for our CCD detector (We get a
deg2 units for this term in the equation which cancels out with the sr−1)

•
(

Npix
)2 factor makes sure that we are computing the counts for per pixel

in an array of Npix × Npix pixels.

Note: In chapter 5, we did not use the geometrical factor for HST as we were
trying to make upper bound estimates. We assumed the geometrical factor to
be unity. This means we assumed that our detector could pick up the signal
from 360◦ around it. Even after considering such an exaggerated detector, the
upper bound estimates were y too low, and considering the geometrical factor
would decrease it further. We consider it in this calculation because we had an
incredibly optimistic SNR for this scenario. Unfortunately, we were blindsided
because the noise from the dark current was not considered.

The 1/4π factor ensures that we are looking at a point source with units of
sr−1. Finally, we divide by the energy of the photon hν to give us a photon count.
For STIS, we have,

θaperture = 0.51 arcsecs, Npix = 1024, Aeff = 4.5 m2 (6.9)

Plugging all the numbers in, for an exposure time of 100 hours at λ = 500 nm
we get,

Sc = 8 × 10−5 per pixel (6.10)

As Sc is in units per pixel, we take the Npix = 1 while computing the SNR.
Plugging all the numbers in eq.(6.7),

SNR = 7.82 × 10−7. (6.11)
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The primary reason for such an extremely low SNR is the dark currents.
Just for reference, our first calculation was done without the knowledge of dark
currents in CCD,

SNRwoDC =
Sc√
Sc

= 8.94 × 10−3. (6.12)

This is a highly optimistic number as HST has data for several years com-
pared to the hundred hours of exposure time considered for the calculation. As
a result, we computed the SNR with greater precision as we believed eq.(6.12) to
be our upper bound.

We perform this calculation with the aid of Hubble Space Telescope’s STIS
exposure time calculator1. This tool calculates the count rates and SNR for a
simulated spectrum of one source in a STIS spectroscopic observation. Sim-
ply, it computes the SNR for a given exposure time or calculates the required
exposure time for the user-given SNR. The tool allows the user to provide a
"User-Supplied Spectra"2. Following the instructions, we generated a Gaussian
with µ = 500 nm and σ = 5 as shown in fig.(6.3). This was used as input for
the "User-Supplied Spectra." The calculator gave us an SNR estimate with the
same order of magnitude to eq.(6.11) for an exposure time of 100 hours (The
background noise factors were tuned down to be null, similar to the analytical
case).

4500 5000 5500 6000
λ[Angstorm]
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2.×10-25

3.×10-25
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erg cm-2 s-1 arcsec-2
Flux Density v/s Wavelength

Figure 6.3: Gaussian wavepacket created in Mathematica to compute the SNR
from Hubble’s STIS exposure time calculator

Conclusion
The SNR calculated for this scenario is extremely low. We do not expect any
signature of gegenschein photons from the Milky Way’s dark matter halo in the

1https://etc.stsci.edu/etc/input/stis/spectroscopic/
2https://etc.stsci.edu/etcstatic/users_guide/1_ref_5_user_spectra.html
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archived HST data in the optical regime.

6.2 Axion forwardschein from a distant radio galaxy
source

In this section, we compute a forwardschein signal for a hypothetical scenario in
which we have a radio galaxy at z = 1 (we assume its spectrum similar to one of
the brightest radio galaxies known to us, Cygnus A). The spectral flux density
for Cygnus A is given by [34],

log SAνd (νd) = a + b log νd + c log2 νd. (6.13)

Here, we have a = 4.695, b = 0.085, c = −0.178 when flux density SAνd is
expressed in Jy and frequency in MHz. We plot this specific flux as a function
of frequency,

10 100 1000 104
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0.001

0.100

10

ν [MHz]

S
[J
y]

Spectrum of Cygnus A

Figure 6.4: Spectral flux density of Cygnus A as a function of frequency

The electromagnetic signal from this radio galaxy travels through space from
z = 1 to z = 0, where it pierces through a dwarf galaxy at the edge of the Milky
Way and then goes through the Milky Way’s dark matter halo before it reaches
Earth. All in all, the contribution to ρint in the forwardschein signal comes from
three sources :

1. ρint(z = 1 → 0): Average dark density of an expanding flat FLRW universe
from z = 1 to z = 0 (Section 6.2.1)

2. ρint(LeoI): Dark matter density from a dwarf galaxy at the edge of MW
(Section 6.2.2)

3. ρint(MW): Dark matter density from the Milky Way’s NFW dark matter
halo (Eq.(6.3))
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6.2.1 Cosmological integrated DM density
We want to compute the integrated DM column density from a (radio) galaxy
approximately z = 1 away from us. We start this calculation in a flat FLRW
metric, with standard ΛCDM cosmology. We need two ingredients to compute
ρint,

ρint ≡
∫ x(z=0)

x(z=z0)
ρ (x) dx (6.14)

=
∫ t(x(z=0))

t(x(z=z0))
ρ (x) cdt (6.15)

= c
∫ z=0

z=z0

ρ (z)
dt
dz

dz. (6.16)

The second equality comes from the chain rule after representing t in terms
of z. Instead of integrating over proper distance, we can integrate over redshift
for convenience. The two ingredients needed are,

1. The first ingredient needed is the average matter density in the universe as
a function of redshift z, i.e., ρ (z). In terms of the scale factor a (t) we write,

Ωm,0 =
ρm,0

ρcrit
, ρm = ρm,0

( a0

a

)3
. (6.17)

After setting a0 = 1 and substituting ρm,0 from Ωm,0 into ρm we get

ρm =
ρcritΩm,0

a3 . (6.18)

We can now substitute a = (1 + z)−1 to get,

ρm (z) = ρcritΩm,0 (1 + z)3 . (6.19)

2. The second ingredient needed to compute ρint is dt
dz , which can be com-

puted as follows,

da
dt

= aH, (6.20)

which alternatively can be written as,

da
dz

dz
dt

= H (6.21)

d
dz

(
1

1 + z

)
dz
dt

=
H

1 + z
(6.22)(

−1

(1 + z)2

)
dz
dt

=
H

(1 + z)
(6.23)
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dt
dz

=
−1

H (1 + z)
. (6.24)

Plugging eq.(6.19), eq.(6.24) into eq.(6.16) we get,

ρint(z0) = c
∫ z=0

z=z0

ρcrit Ωm,0 (1 + z)3
( −1

H (1 + z)

)
dz (6.25)

= c ρcrit Ωm,0

∫ z=z0

z=0

(
(1 + z)2

H

)
dz. (6.26)

We use the following standard expression for the Hubble parameter in flat
space [56],

H = H0

√
Ωm,0 (1 + z)3 + ΩΛ,0 + Ωr,0 (1 + z)4. (6.27)

We are primarily interested in signals coming from stars, and the first stars
were born around z ≃ 10. Hence, we can ignore the Ωr,0 component as it is
negligible at this redshift. Plugging this in ρint, we get,

ρint(z0) =
cρcritΩm,0

H0

∫ z=z0

z=0

 (1 + z)2√
Ωm,0 (1 + z)3 + ΩΛ,0

 dz. (6.28)

In fig.(6.2.1), we have numerically evaluated the integral for

ρcrit = 2.2 × 10−27 kg m−3, Ωm,0 = 0.3, (6.29)

and plotted it for different values of z0.
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Figure 6.5: Left: Integrated dark matter column density from redshift z ∈ [0, 1]
in an expanding ΛCDM universe ; Right: Integrated dark matter column density
from redshift z ∈ [0, 5] in an expanding ΛCDM universe

At z = 1, we get a ρint comparable but less than corresponding to Milky
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Ways’s NFW dark matter halo (same order of magnitude),

ρint(z0 = 1 → 0) = 0.015 g cm−2. (6.30)

6.2.2 Dwarf Galaxy
To compute the forwardschein from dwarf galaxies, we would first like to have
their density profile. We use parameters from article [57] to model the density
profile and reproduce some of the plots and results. We chose Leo I as the dwarf
galaxy for our analysis. We adopt a generalized Hernquist profile like in the
cited article,

ρDM (R, z) = ρ0

(
r

bhalo

)−γ [
1 +

(
r

bhalo

)a]− β−γ
α

, (6.31)

r2 = R2 +
z2

Q2 , (6.32)

where ρ0 and bhalo are the scale density and radius, respectively, α is the
sharpness parameter of the transition from the inner slope γ to the outer slope
β, and Q is a constant axial ratio of a dark matter halo. From the above-cited
article, we have the following parameters,

Q = 1.39, bhalo = 103.5 pc, ρ0 = 10−2.35 M⊙pc−3, (6.33)
α = 1.68, β = 6.17, γ = 1.35. (6.34)

Using these estimates, we plot the Hernquist profile for LeoI,
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Figure 6.6: Dark matter density profile of dwarf galaxy Leo I plotted as a func-
tion of distance from the center of the halo

The astrophysical D factor for Leo I integrated over a solid angle of 0.5 is
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given by D0.5 = 1017.6 GeV cm−2, where (For an upper bound, we assume ρ to
be only radially dependent),

D0.5 =
∫ 2π

0
dϕ
∫ 0.5◦

0
sin(α)dα

∫
los

ρDM(x)dx. (6.35)

This gives us,

ρint(LeoI) =
∫

los
ρDM(x)dx =

D0.5◦

2π
∫ 0.5◦

0 sin(α)dα
(6.36)

= 0.0029 g cm−2. (6.37)

6.3 Projected SNR
We combine the results from the three regions to estimate an axion forward-
schein signal stimulated from a radio galaxy source piercing through an axion
dark matter column made of: average cosmological dark matter from z = 1 → 0,
plus dark matter in LeoI, plus in Milky Way’s dark matter halo.

We estimate the SNR using Five-hundred-meter Aperture Spherical Telescope
(FAST),

SNR(FAST) =
Psignal

Pnoise
=

h̄c4g2
aγγ

16
Sνcygnus(ν = 300 MHz)ρint-totalAeff

Pnoise
, (6.38)

where Psignal is the power in the forwardschein signal. The noise is given by [13],

Pnoise = 2kBTsys

√
νref/1000

tobs
. (6.39)

Using νref = 300 MHz, tobs = 100 h and a low Tsys = 30 K in order to estimate
the upper bound on SNR,

Pnoise = 7.56 × 10−15 g cm2 s−3. (6.40)

The sum of integrated axion DM column over the three regions is given by,

ρint-total = ρint (z = 1 → 0) + ρint (LeoI) + ρint(MW) (6.41)

= (0.015 + 0.003 + 0.032) g cm−2 = 0.05 g cm−2 (6.42)

= 0.5 kg m−2. (6.43)

The source flux density is given by eq.(6.13) (plotted in fig.(6.4)), at ν =
300 MHz we have,

Sνcygnus(ν = 300 MHz) = 5.43 × 10−24 g s−2 = 0.54 Jy (6.44)

= 5.43 × 10−27 W m−2 Hz−1. (6.45)

Carefully plugging all the quantities mentioned above into eq.(6.38) and en-
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suring we get a dimensionless ratio, we get,

SNR(FAST) = 2.3 × 10−4. (6.46)

Conclusion
The SNR for a forwardschein signal for this slightly complex yet innovative case
is very low. We do not expect any signature of forwardschein photons from past
and present data that FAST has collected.
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Chapter 7

Conclusion

This thesis studied the probability of detecting photons produced from decaying
axions in the stellar basins of various compact astrophysical objects and in the
Milky Way’s dark matter halo. In particular, we look for photons produced from
a stimulated decay of axions.

In chapter 2, we begin by briefly explaining the strong CP problem that mo-
tivates the existence of QCD axions. Further, we motivate the existence of ALPs.
Then, with the help of appendix A, we show that axions can be produced via
non-thermal means by the misalignment mechanism. This motivates the candi-
dacy of axions as a dark matter candidate. We end the chapter by summarizing
the various types of experiments searching for these particles.

In chapter 3, we established that, given an axion-photon interaction, a photon
with an angular frequency half the axion’s mass could produce a stimulated de-
cay of the axion into two back-to-back photons. This is extremely crucial, as the
vacuum lifetime of axions corresponds to time scales larger than the universe’s
age. The stimulated decay enables us to probe the axion-photon coupling in this
scenario. In appendix B, we derive the Axion-Maxwell’s equations. Using them,
in appendix C we derive the power in the echo wave eq.(C.29) - electromagnetic
wave corresponding to the photons when a density of axions goes under stimu-
lated decay due to an external light source. This enables us to define the flux in
a gegenschein or forwardschein signal produced from an axion source given in
eq.(3.4).

In chapter 4, we dive deep into the details of the formalism that enables us
to compute the properties of stellar basins. First, we motivate the existence of
stellar basins. Then we derive a generic expression that enables us to estimate
the injection rate of particles that enter a gravitationally bound orbit around a
compact stellar object in eq.(4.18). This expression is a function of the emission
rates of particles, which depend on their emission process. Using this expres-
sion, we compute the bound energy in the stellar basin for axions produced by
the sun via axion-bremsstrahlung and axion-Compton scattering processes. The
emission rate for axion-bremsstrahlung is derived in appendix D. The fig.(4.4)
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has the axion energy density at Earth’s surface from the solar basin plotted as a
function of axion mass.

In chapter 5, we combine the ideas from the previous two chapters and look
for axion echos in the solar axion basin and basins of other compact stellar
objects like a white dwarf and a neutron star. We assume that the white dwarf
and neutron star axion basin is highly similar to the solar axion basin. This is a
simplifying assumption on the white dwarf and neutron star axion basin to make
zeroth order estimates on the echo signal. Future studies that precisely compute
axion stellar basins of a white dwarf and neutron stars could lead to different
axion basin densities. Compared to our zeroth order assumptions, these results
could potentially result in varied estimates for the echo signals.

• In section 5.1, we look for echos from basins formed out of 3 keV axions
around the sun, white dwarf, and neutron stars; this is because the ax-
ion basin density is peaked at this axion mass. Photons from each of the
mentioned stellar objects are used as the source of electromagnetic waves
that boost the decay rates of the axions in their respective basins. We use
the Chandra X-Ray telescope to estimate the SNR for the echo signals. We
conclude that the axion echo signals from these basins in the X-ray domain
are negligible.

• In section 5.2, we look for basinschein signals from the solar axion basin
stimulated by the sun’s UV, optical, and IR spectrum. We use different
detectors on the HST to estimate flux ratios for the forwardschein signals.
In all three scenarios, we find both the forwardschein and gegenschein
signals feeble to be detected by HST.

• In section 5.3, we make a quick comparison between the flux densities
emitted from an O-star and the sun. We assume that the O-star has a
blackbody spectrum corresponding to T = 50000 K. We conclude that any
forwardschein estimates from the O-star will be more significant than the
sun but in no way sufficient to produce a detectable signal.

Finally, in chapter 6, we estimate the axion echo by assuming that the dark
matter halo of the Milky Way is entirely made out of axions. We call this axion
haloschein.

• In section 6.1, we compute the haloschein signal by using an optical band
from the sun as the stimulating source. We use HST to estimate the SNR
ratio. Initially, we found a good SNR for an exposure time of 100 h. Un-
fortunately, our optimistic signal turns extremely weak after considering
the dark current noise, as explained in appendix E. We perform precise
calculations to estimate an upper bound on the SNR and find it too low to
be detected by HST.

68



• In section 6.2, we assume a hypothetical scenario that the flux from a pow-
erful radio galaxy at redshift one pierces through various regions contain-
ing dark matter axion densities, producing a forwardschein signal. In par-
ticular, it pierces through three regions, (i) the average dark matter density
in space from z = 1 to z = 0 in an expanding FLRW universe, (ii) the dark
matter density from a dwarf galaxy at the edge of our Milky Way, (iii) the
dark matter density from the Milky Way’s dark matter halo. We compute
the required integrated axion densities for each of these regions. We as-
sume that the radio galaxy has a spectrum similar to Cygnus A (one of the
brightest radio galaxies). We tie all of this together, and unfortunately, we
still find the SNR for this forwardschein signal to be extremely weak to be
detected by FAST.

Our thesis aimed to put a new astrophysical bound on the axion-photon
coupling by probing axion echos. In this thesis, we considered many scenarios
that could produce axion echos. Unfortunately, the axion echo estimated from
all these situations is too weak to constrain the axion-photon coupling further.
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Appendix A

FLRW axion mislignment

In this appendix we derive the equation of motion for the axion misalignment
field in an expanding FLRW universe. We find that the expression we derived
matches the one from standard literature [19, 58–60] .

We have,

Lθ = f 2
a

[
−1

2
(∂µθ)(∂µθ)− V(θ)

]
(A.1)

V(θ) = m2
a f 2

a (1 − cos θ) (A.2)

The FLRW metric for a flat expanding universe (k = 0) is given by,

ds2 = dt2 − R2(t)d⃗r2 (A.3)

In 1+3 Cartesian coordinates, we have,

gµν =


1 0 0 0
0 −R2(t) 0 0
0 0 −R2(t) 0
0 0 0 −R2(t)

 (A.4)

gµν =


1 0 0 0
0 − 1

R2 0 0
0 0 − 1

R2 0
0 0 0 − 1

R2

 (A.5)

Sθ =
∫

d4x
√
−gLθ (A.6)

The following is our Euler-Lagrange equation in curved spacetime where ∇µ

is the covariant derivative,
∂Lθ

∂θ
= ∇µ

(
∂Lθ

∂(∂µθ)

)
(A.7)
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LHS = f 2
a m2

a sin θ (A.8)

RHS = f 2
a ∇µ (gµν∂νθ) (A.9)

= f 2
a gµν∇µ(∂νθ) (A.10)

≡ f 2
a□θ (A.11)

Evaluating the d’Alembertian,

□θ = gµν∇µ(∂νθ) (A.12)

= gµν
(

∂µ∂νθ − Γα
µν∂αθ

)
(A.13)

= gµν∂µ∂νθ − gµνΓα
µν∂αθ (A.14)

= g00∂0∂0θ + gij∂i∂jθ − g00Γα
00∂αθ − gijΓα

ij∂αθ (A.15)

= θ̈ − 1
R2∇

2θ − (Γ0
00∂0θ + Γi

00∂iθ)− gij(Γ0
ij∂0θ + Γk

ij∂kθ) (A.16)

A quick Mathematica computation gives us the required Christoffel symbols,

Γ0
11 = Γ0

22 = Γ0
33 = R(t)Ṙ(t) (A.17)

Γ1
10 = Γ1

01 = Γ2
20 = Γ2

02 = Γ3
30 = Γ3

03 =
Ṙ(t)
R(t)

(A.18)

giving us,

□θ = θ̈ − 1
R2∇

2θ + gij(Γ0
ij∂0θ − Γk

ij∂kθ) (A.19)

= θ̈ − 1
R2∇

2θ − (g11Γ0
11 + g22Γ0

22 + g33Γ0
33)∂0θ (A.20)

− gij(Γ1
ij∂1θ + Γ2

ij∂2θ + Γ3
ij∂3θ)

= θ̈ − 1
R2∇

2θ + 3
1

R2 (RṘ)θ̇ (A.21)

= θ̈ − 1
R2∇

2θ + 3
Ṙ
R

θ̇ (A.22)

Defining Hubble rate as H = Ṙ/R, we reach the following equation describ-
ing the action of the d’Alembertian operator on our axion (or misalignment)
field θ,

□θ = θ̈ + 3Hθ̇ − 1
R2∇

2θ (A.23)

Equating LHS (A.8) =RHS (A.23) we get the following equation of motion for
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the axion (or misalignment) field in an expanding FLRW universe,(
∂2

t + 3H∂t −
∇2

R2

)
θ + ma(t)2 sin θ = 0 (A.24)
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Appendix B

Axion Electrodynamics

In this appendix, we will derive the modified Maxwell’s equations for a model
consisting of a standard massless U (1) boson and a massive pseudo-scalar par-
ticle a (axion). The boson and the pseudo-scalar interact via a aFµν F̃µν term. We
get the same equations as in [2], which is the original paper that motivated and
derived them.

B.1 Axion Klein-Gordon equation
We can compute the modified Maxwell’s equations for an additional axion field
in a standard by starting from the following Lagrangian density,

L = −1
4

FµνFµν +
1
2
(
∂µa
)
(∂µa)− 1

2
m2

aa2 +
1
4

g a Fµν F̃µν (B.1)

where a is the axion field, ma the mass of the axion, Fµν is the U (1) field strength
tensor, F̃µν = (1/2) εµναβFαβ it’s dual, and g is the coupling constant for dimen-
sion five the operator that couples the axion to the photon (as seen in the last
term). We can plug this Lagrangian into the Euler-Lagrange equations to get the
necessary equations of motion which will be our modified Maxwell’s equations,
in the presence of an axion field.

∂L
∂a

= ∂α

(
∂L

∂ (∂αa)

)
(B.2)

−m2
aa +

1
4

g Fµν F̃µν = ∂α

(
∂

∂ (∂αa)

(
1
2
(
∂µa
)
(∂µa)

))
(B.3)

Carefully evaluating the ∂/ (∂ (∂αa)) term in RHS, we get,

∂

∂ (∂αa)

(
1
2
(
∂µa
)
(∂µa)

)
=

1
2

(
∂
(
∂µa
)

∂ (∂αa)
(∂µa) +

(
∂µa
) ∂ (∂µa)

∂ (∂αa)

)
(B.4)
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=
1
2

(
δµα (∂

µa) +
(
∂µa
)

gµν ∂ (∂νa)
∂ (∂αa)

)
(B.5)

=
1
2

(∂αa) +
(
∂µa
)

gµνδνα︸ ︷︷ ︸
gµα

 (B.6)

=
1
2
(2∂αa) = ∂αa (B.7)

Plugging this back into our equation, we get

−m2
aa +

1
4

g Fµν F̃µν = ∂α (∂
αa) (B.8)

Rearranging this equation, we get(
∂2 + m2

)
a =

1
4

gFµν F̃µν (B.9)

Which is similar to our well known Klein-Gordon wave equation,
(
∂2 + m2)ψ (x) =

J (x) where J (x) is the source term of the wave ψ (x). Drawing an analogy to
this, we can see that our axion field can be sourced by a Fµν F̃µν term. We will
further evaluate this source term into an even more familiar-looking expression
as a function of E⃗ and B⃗. The following algebra helps us reduce the FF̃ term to
a form that comes in handy several times.

Fµν F̃µν =
1
2

εµναβFµνFαβ (B.10)

=
1
2

(
ε0ijkF0iFjk + εi0jkFi0Fjk + εij0kFijF0k + εijk0FijFk0

)
(B.11)

=
1
2

((
ε0ijk − εi0jk

)
F0iFjk +

(
εij0k − εijk0

)
F0kFij

)
(B.12)

=
1
2

(
2ε0ijkF0iFjk + 2εij0kF0kFij

)
(B.13)

=
1
2

(
2ε0ijkF0iFjk + 2εjk0iF0iFjk

)
(B.14)

=
1
2

(
2ε0ijkF0iFjk + 2ε0ijkF0iFjk

)
(B.15)

= 2
(

ε0ijkF0iFjk

)
(B.16)

We can further expand this in terms of E⃗ and B⃗, which will help us interpret
the equations of motion from a canonical perspective. To do that, we will first
expand the field strength tensors in terms of E⃗ and B⃗ by using the definition of
Fµν,

F0i = −Ei (B.17)
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Fij = εijkBk (B.18)

We can contract the indices on FF̃ using the above two equations,

Fµν F̃µν = 2
(

ε0ijkF0iFjk

)
= −2

(
ε0ijkEiε jklBl

)
(B.19)

= −2 ε0ijkε jkl︸ ︷︷ ︸
2δi

l

(
EiBl

)
= −4

(
E⃗ · B⃗

)
(B.20)

Using this, the axion Klein-Gordon equation reads as,(
∂2 + m2

)
a = −g

(
E⃗ · B⃗

)
(B.21)

B.2 Axion Maxwell equation
To get our modified Maxwell equations, we want to minimize the action for L
with Aα. Hence, we use the following Euler-Lagrange equation,

∂L
∂Aα

= ∂λ

(
∂L

∂ (∂λ Aα)

)
(B.22)

Looking at the Lagrangian, we can easily see that the only term that will count
as a modification to the regular Maxwell’s equation is given by the FF̃ term.
Hence, we will compute the equation of motion for that term and add it to
regular Maxwell’s equation. Defining L ⊃ La = (1/4) g a Fµν F̃µν, we have the
LHS as,

LHS =
∂L

∂Aα
= 0 (B.23)

as there is no explicit Aα dependence in La.

RHS = −1
2

∂λFλα + ∂λ

(
∂La

∂ (∂λ Aα)

)
(B.24)

= −1
2

∂λFλα +
1
4

g∂λ

a
∂
(

Fµν F̃µν
)

∂ (∂λ Aα)︸ ︷︷ ︸
(⋆)

 (B.25)

evaluating the (⋆) term,

(⋆) ⇒
(

∂
(

Fµν F̃µν
)

∂ (∂λ Aα)

)
=

(
∂
((

∂µ Aν − ∂ν Aµ

)
F̃µν
)

∂ (∂λ Aα)

)
(B.26)

=

(
∂
((

∂µ Aν − ∂ν Aµ

)
F̃µν
)

∂ (∂λ Aα)

)
(B.27)
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=
(

δλ
µ δα

ν − δλ
ν δα

µ

)
F̃µν (B.28)

=
(

F̃λα − F̃αλ
)

(B.29)

= 2F̃λα (B.30)

gives us,

RHS = −1
2

∂λFλα +
1
2

ga∂λ

(
aF̃λα

)
(B.31)

gathering LHS=RHS, we get,

∂λFλα = g∂λ

(
aF̃λα

)
(B.32)

∂λFλα = g
(
(∂λa) F̃λα + a

(
∂λ F̃λα

))
(B.33)

using ∂λ F̃λα = 0 we get,
∂λFλα = g (∂λa) F̃λα (B.34)

Expanding for α, we get the axion Maxwell’s equations, starting with α = 0

∂λFλ0 = g (∂λa) F̃λ0 (B.35)

∂0F00 + ∂iFi0 = g
(
(∂0a) F̃00 + (∂ia) F̃i0

)
(B.36)

∂iFi0 = g (∂ia) F̃i0 (B.37)

= g (∂ia) F̃i0 (B.38)

which expanding F̃i0 = (1/2)εi0αβFαβ = (1/2)εi0jkFjk = −(1/2)ε0ijkFjk = Bi

∂iFi0 = g (∂ia) Bi (B.39)

∇⃗ · E⃗ = gB⃗ ·
(
∇⃗a
)

(B.40)

Now, for α = k,

∂λFλk = g (∂λa) F̃λk (B.41)

∂0F0k + ∂iFik = g
(
(∂0a) F̃0k + (∂ia) F̃ik

)
(B.42)

= g
(
− (∂ta) Bk + E⃗ × ∇⃗a

)
(B.43)

−∂E⃗
∂t

+
(
∇⃗ × B⃗

)
= g

(
E⃗ × ∇⃗a − B⃗

∂a
∂t

)
(B.44)

−∂E⃗
∂t

+
(
∇⃗ × B⃗

)
= g

(
E⃗ × ∇⃗a − B⃗

∂a
∂t

)
(B.45)
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We can express this in terms of the magnetic vector potential A⃗ which will serve
as a starting point for the derivation in Appendix. (??)(

∂2A⃗
∂t2 +

(
∇⃗
(
∇⃗ · A⃗

)
−∇2A

))
=g

(
−∂A⃗

∂t
× ∇⃗a −

(
∇⃗ × A⃗

) ∂a
∂t

)
(B.46)

where if we choose Coulomb gauge, ∇⃗ · A⃗ = 0, we get(
∂2

t −∇2
)

A⃗ = g

(
−∂A⃗

∂t
× ∇⃗a −

(
∇⃗ × A⃗

) ∂a
∂t

)
(B.47)
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Appendix C

Axion Echo

In this appendix, we derive the expression for the power in an axion echo. We
successfully derive the expression following [11].

We assume a perfectly cold axion fluid of density ρ = (1/2)m2
a A2 where we

define the axion field by ϕ = A sin (mat). We have already chosen the Coulomb
gauge while deriving the modified Axion-Maxwell equation, in which the sec-
ond inhomogeneous Maxwell’s equation in the presence of an axion field is
given by Eq. (B.47) as seen in Appendix. (B),(

∂2
t −∇2

)
A⃗ = −g

(
∇⃗ × A⃗

)
∂tϕ (C.1)

We start by considering vector potential for the incoming radiation that will
stimulate the decay and another one for radiation/echo produced due to the
decay. We will label them as A⃗0 and A⃗1 respectively. For,

A⃗0 (x, t) = Re
(∫

d3k A⃗0

(⃗
k
)

ei(⃗k·⃗x−ωt)
)

(C.2)

Here ω = |⃗k| = k. We can use A⃗0 as the source for production of A⃗1 in the
presence of an axion density by using Eq.(C.1),(

∂2
t −∇2

)
A⃗1 = −g

(
∇⃗ × A⃗0

)
∂tϕ +O

(
g2
)

(C.3)

Where we can define A⃗1 as,

A⃗1 (x⃗, t) = Re
(∫

d3k A⃗1

(⃗
k, t
)

ei(⃗k·⃗x+ωt)
)

(C.4)

Using Eq. (C.2), Eq. (C.4) in Eq. (C.3) and as we are working with the Fourier
transform of our functions, we can always make the ∇⃗ → i⃗k replacement,
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(
∂2

t −∇2
)(∫

d3k A1

(⃗
k, t
)

ei⃗k·⃗x+ωt
)

= −g
(
∇⃗ × Re

(∫
d3k A⃗0

(⃗
k
)

ei(⃗k·⃗x−ωt)
))

∂t (A sin (mat))
(C.5)

(
∂2

t − i2k2
)(∫

d3k A1

(⃗
k, t
)

ei⃗k·⃗x+ωt
)

= −gAma cos (mat)
(

i⃗k ×
(∫

d3k A⃗0

(⃗
k
)

ei(⃗k·⃗x−ωt)
)) (C.6)

(
∂2

t + k2
)(∫

d3k A1

(⃗
k, t
)
�

��ei⃗k·⃗xeiωt
)

= −gAma cos (mat)
(

i⃗k ×
(∫

d3k A⃗0

(⃗
k
)
�
��ei⃗k·⃗xe−iωt

)) (C.7)

(
∂2

t + ω2
)

Re
(∫

d3k A1

(⃗
k, t
)

eiωt
)

= −gAma cos (mat)
(

i⃗k ×
(∫

d3k A⃗0

(⃗
k
)

e−iωt
)) (C.8)

(
∂2

t + ω2
)

A1

(⃗
k, t
)

eiωt = −gAma cos (mat)
(

i⃗k × A⃗0

(⃗
k
)

e−iωt
)

(C.9)(
∂2

t + ω2
)

A1

(⃗
k, t
)

eiωt = −gAma

(
eimat + e−imat

2

)(
i⃗k × A⃗0

(⃗
k
)

e−iωt
)

(C.10)(
∂2

t + ω2
)

A1

(⃗
k, t
)

eiωt = −gAma

2

(
i⃗k × A⃗0

(⃗
k
))

ei(ma−ω)t (C.11)

We dropped the e−imat term, which does not give any resonance.

LHS = ∂2
t

(
A1

(⃗
k, t
)

eiωt
)
+ ω2

(
A1

(⃗
k, t
)

eiωt
)

(C.12)

= ∂t

(
eiωt∂t A1

(⃗
k, t
)
+ iωeiωt A1

(⃗
k, t
))

+ ω2
(

A1

(⃗
k, t
)

eiωt
)

(C.13)

=
(

∂2
t A1

(⃗
k, t
))

eiωt + iωeiωt∂t

(
A1

(⃗
k, t
))

+
((((((((((((
(iω)2

(
A1

(⃗
k, t
)

eiωt
)

+ iωeiωt∂t

(
A1

(⃗
k, t
))

+
�����������

ω2
(

A1

(⃗
k, t
)

eiωt
)

(C.14)

=
(

∂2
t A1

(⃗
k, t
))

eiωt + 2iωeiωt∂t A1

(⃗
k, t
)

(C.15)

Plugging this back into our equation gives us,(
∂2

t A1

(⃗
k, t
))

eiωt + 2iωeiωt∂t A1

(⃗
k, t
)
= −gAma

2

(
i⃗k × A⃗0

(⃗
k
))

ei(ma−ω)t

(C.16)
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(
∂2

t A1

(⃗
k, t
))

+ 2iω∂t A1

(⃗
k, t
)
= −gAma

2

(
i⃗k × A⃗0

(⃗
k
))

ei(ma−2ω)t

(C.17)

We ignore the ∂2
t term compared to the ∂t term by assuming slowly varying

A⃗1 concerning time. This gives us,

��������(
∂2

t A1

(⃗
k, t
))

+ 2iω∂t A1

(⃗
k, t
)
= −gAma

2

(
i⃗k × A⃗0

(⃗
k
))

ei(ma−2ω)t (C.18)

∂t A1

(⃗
k, t
)
= −gAma

4ω

(⃗
k × A⃗0

(⃗
k
))

ei(ma−2ω)t (C.19)

We can solve this differential equation with ease by assuming A⃗1

(⃗
k, 0
)
= 0∫ t

0
∂t′ A⃗1

(⃗
k, t′
)

dt′ = −gAma

4ω

(⃗
k × A⃗0

(⃗
k
)) ∫ t

0
ei(ma−2ω)t′ dt′ (C.20)

A⃗1

(⃗
k, t
)
= −gAma

4ω

(⃗
k × A⃗0

(⃗
k
))( ei(ma−2ω)t − 1

i (ma − 2ω)

)
(C.21)

We can redefine ϵ = ma/2 − ω, to have,

A⃗1

(⃗
k, t
)
= −gAma

4ω

(⃗
k × A⃗0

(⃗
k
))( ei2ϵt − 1

2iϵ

)
(C.22)

= −gAma

4ω

(⃗
k × A⃗0

(⃗
k
))

eiϵt
(

eiϵt − e−iϵt

2iϵ

)
(C.23)

= −gAma

4ω

(⃗
k × A⃗0

(⃗
k
))

eiϵt
(

sin (ϵt)
ϵ

)
(C.24)

From here, we can compute the power in the A⃗1 wave as a function of power
in A⃗0 wave. We define the power in the A⃗0 wave as

P0 =
∫

dω
dP0

dω
(C.25)

Using this and the fact that

lim
t→∞

(
sin (ϵt)

ϵ

)2

= δ (ϵ)πt (C.26)

Plugging these in, we get the power for A⃗1,

P1 =
g2A2m2

a
16

k̂2P0

(
sin (ϵt)

ϵ

)2

(C.27)

where k̂ = k⃗/ω.

P1 =
g2A2m2

at
16

∫
dω

dP0

dω
(ω)δ

(ma

2
− ω

)
π (C.28)
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=
g2ρ

16

[
dP0

dω

]
ω=ma

2

πt (C.29)
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Appendix D

Energy loss rate for axion production
via axion-bremstrahlung

In this appendix, we compute the expression for the energy loss rate of an axion
produced from an axion-bremsstrahlung process. We successfully derive the
expression given in [9] upto a factor of four.

We start with eq.(4.19) for axion bremstrahlung, where the variables are de-
fined according to fig.(4.2),

QB =
1

(2π)3

∫ d3k
2

(
g1g2

(2π)6
1
4

∫ d3p1

E1

∫ d3p2

E2

)
︸ ︷︷ ︸

Pin(
g3g4

(2π)6
1
4

∫ d3p3

E3

∫ d3p4

E4

)
︸ ︷︷ ︸

Pout

Z2
j e4g2

aee

q⃗2 + κ2
s

4m2
j

m2
e︸ ︷︷ ︸

|M|2

(2π)4δ3( p⃗1 + p⃗2 − p⃗3 − p⃗4 − k⃗)δ(E1 + E2 − E3 − E4 − ω)F (D.1)

We can now define q⃗ := p⃗2 − p⃗4. We can also break down the Dirac delta
function as follows,

δ3( p⃗1 + p⃗2 − p⃗3 − p⃗4 − k) =
∫

d3qδ3( p⃗1 − p⃗3 − k + q⃗)δ3(⃗q − p⃗2 + p⃗4) (D.2)

Plugging this into QB (equation bleeds onto next page),

QB =
4g1g2g3g4

32(2π)11

Z2
j e4g2

aeem2
j

m2
e

∫
d3k
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∫ d3p1(
me +

p⃗1
2

2me

) ∫ d3p2

mj

∫ d3p3(
me +

p⃗3
2

2me

) ∫ d3p4

mj

∫
d3qδ3( p⃗1 − p⃗3 − k⃗ + q⃗)δ3(⃗q − p⃗2 + p⃗4)

δ

(
p⃗1

2 − p⃗3
2

2me
− ω

)
1

q⃗2 + κ2
s

F (D.3)

where we have used E1,3 = me +( p⃗2
1,3/2me) and E2 = E4 = mj.We can also safely

assume me ≫ p⃗1, p⃗2, which will give us me + p⃗2
1,3/2me → me (Except inside the

Dirac delta function, the me’s cancel each other).Applying these approximations
we have,

QB =
4g1g2g3g4

32(2π)11

Z2
j e4g2

aee

m4
e

∫
d3k

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3p4∫

d3q δ3( p⃗1 − p⃗3 − k⃗ + q⃗)δ3(⃗q − p⃗2 + p⃗4)

δ

(
p⃗1

2 − p⃗3
2

2me
− ω

)
1

q⃗2 + κ2
s

F (D.4)

We integrate out d3p4 over δ3(⃗q − p⃗2 + p⃗4). There is no p⃗4 dependence in our
expression, so this integral fixes q⃗ = p⃗2 − p⃗4 as we had defined (The main pur-
pose of this step is to get a

∫
d3q⃗ in our expression as the propagator explicitly

depends on it). Also, in the soft limit we take k⃗ → 0, ω → m,

QB =
4g1g2g3g4

32(2π)11

Z2
j e4g2

aee

m4
e

∫
d3k

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3q

δ3( p⃗1 − p⃗3 + q⃗)δ

(
p⃗1

2 − p⃗3
2

2me
− m

)
1

q⃗2 + κ2
s

F (D.5)

Where we have the distribution factor as (where f = f (k) for the axion),

F = (1 + f )FinFout − f FoutFin (D.6)

= (1 + f )

(
in

∏
i

fi

)(
out

∏
j
(1 ± f j)

)
− f

(
out

∏
i

fi

)(
in

∏
j
(1 ± f j)

)
(D.7)

= (1 + f ) ( f1 f2) ((1 − f3)(1 ± f4))− f ( f3 f4) ((1 − f1)(1 ± f2)) (D.8)
= ( f1 f2)(1 − f3) + f f1 f2(1 − f3)− f f3 f4(1 − f1) (D.9)
= f1 f2 − f1 f2 f3 + f f1 f2 − f f1 f2 f3 − f f3 f4 + f f1 f3 f4 (D.10)

We can assume that the distribution function of the ions has not changed after
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the process; hence, f2 ≈ f4. This will cancel out the fourth and the last term,

F = f1 f2(1 − f3 + f ) + f f2 f3 (D.11)

When the basin starts to form, we can assume that f ≪ 1. The last term is an ϵ2

term as f , f2 ≪ 1. This leaves us with,

F = f1 f2(1 − f3) (D.12)

We plug this distribution factor in our current form of QB,

QB =
4g1g2g3g4

32(2π)11

Z2
j e4g2

aee

m4
e

∫
d3k

∫
d3p1

∫
d3p2

∫
d3p3

∫
d3q

δ3( p⃗1 − p⃗3 + q⃗)δ

(
p⃗1

2 − p⃗3
2

2me
− m

)
1

q⃗2 + κ2
s

f1 f2(1 − f3) (D.13)

We can now integrate out
∫

d3p3 over the remaining δ3 function. It will fix
p⃗3 = p⃗1 − q⃗. Apart from that, we can integrate out

∫
d3p2

g2 f2
(2π)3 = nj, giving us,

QB =
4g1g3g4

32(2π)8
nNe4g2

aee
m4

e

∫
d3k

∫
d3p1

∫
d3q

δ

(
p⃗1

2 − p⃗3
2

2me
− m

)
1

q⃗2 + κ2
s

f1(1 − f3) (D.14)

where njZ2
j = nN.
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Appendix E

Dark Currents for CCD

A good explanation of Dark Currents (DC) and their role in CCD detection is
given in [61]. A summary of DC is provided in this appendix for quick reference.

To understand the origin of DC, it is essential to recall how a Charge-Coupled
Device (CCD) works. CCDs are built by using semiconductors like Silicon. A
comparison of metals, insulators, and semiconductors is shown in fig.(E.1).

Figure E.1: Left: Band structure of electron energy in a solid. Right: The dif-
ference between the band gaps in insulators, metals, and semiconductors. The
figure is taken from [61].

As shown in the figure above, semiconductors have small band gaps. Elec-
trons can be promoted into the conduction band by absorbing energy as a pho-
ton. This property of semiconductors allows them to be used in CCDs as photon
detectors.

Photons excite electrons into the conduction band. These electrons are free to
move through the CCD and so can be moved to some readout electronics, which
counts the number of electrons that have been excited. The number of electrons
counted is proportional to the number of photons arriving at the detector. CCDs
thus have to perform four jobs:
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1. Create photo-electrons

2. Store photo-electrons in pixels during exposure to photons

3. Move the photo-electrons to the readout electronics

4. Count the number of photo-electrons created in each pixel

Dark Currents The photo-electrons are produced in CCDs when photons ex-
cite electrons from the valence to the conduction band. Photo-electrons can also
be generated by thermal excitation, i.e., thermal excitation can produce electrons
in the conduction band. These thermally excited electrons are indistinguishable
from photo-electrons. The electrons in the conduction band due to thermal exci-
tations contribute to our measurement. These contributions are known as Dark
Currents. Devices are calibrated to account for their dark currents by taking
Dark Frames. Dark Frames correspond to the data taken with a closed shut-
ter on a CCD. Dark Frame data is considered when analyzing the actual data
collected by the CCD.
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