Rohan Kulkarni

June 28, 2021

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

1 Why Long-Lived-Particles (LLPs)?

2 Lifetime of a particle

3 Signature of "Long-lived particles" at Collider experiments

Direct detection Indirect detection

4 LLP specific detectors FASER MATHUSLA BELLE II

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Why Long-Lived-Particles (LLPs)?

Motivation for LLP

Particles Rohan Kulkarni

Dark matter searches with Long Lived

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

LLPs?

• LLPs ($\tau \sim ns, c\tau \sim cm$) : essential part of SM \Rightarrow Reason to believe for them to be in BSM

Dark-matter as LLPs?

- Models of WIMP DM → Null results to date in indirect detection (ID), direct detection (DD), and missing energy searches
 - WIMP DM \rightarrow Severely constrained regions of parameter space
 - Broader investigation into possible signals of particle dark matter

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Lifetime of a particle

Decay rates

- Large collection : *decaying particles* at time t : N(t).
- Decay rate Γ : probability per unit time \rightarrow given particle disintegrate
- Rate : particles decrease

$$\frac{dN}{dt} = -\Gamma N \Rightarrow N(t) = N(0) e^{-\Gamma t}$$

• Mean lifetime \rightarrow reciprocal of the decay rate

$$\tau = \frac{1}{\Gamma}$$

- Reality : most particles \rightarrow decay by several different routes.
 - Total decay rate \rightarrow sum of individual rates and so is their lifetimes

$$\Gamma_{\mathrm{tot}} = \sum_{k=1}^{n} \Gamma_{k} \Rightarrow \tau = rac{1}{\Gamma_{\mathrm{tot}}}$$

• Branching ratios for k'th decay mode : $\frac{\Gamma_k}{\Gamma_{tot}}$

Dark matter searches with Long Lived Particles

> Rohan Kulkarni

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

> Rohan Kulkarni

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived" at Collider experiments Direct detection Indirect detection LLP specific detectors FASER MATHUSLA

BELLE II

> Rohan Kulkarni

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Multiple DM theories predicting LLPs

		Small coupling	Small phase space	Scale suppression
SUSY	GMSB			\checkmark
	AMSB		\checkmark	
	Split-SUSY			✓
	RPV	\checkmark		
NN	Twin Higgs	\checkmark		
	Quirky Little Higgs	\checkmark		
	Folded SUSY		\checkmark	
DM	Freeze-in	\checkmark		
	Asymmetric			 ✓
	Co-annihilation		\checkmark	
Portals	Singlet Scalars	\checkmark		
	ALPs			\checkmark
	Dark Photons	\checkmark		
	Heavy Neutrinos			\checkmark

Figure: Table of theories predicting LLPs[1]

> Rohan Kulkarni

Why Long-

Lifetime of a particle

particles" at Direct detection Indirect detection

LLP specific MATHUSLA BELLE II

DM particle SM particle

Figure: Toy diagram of a freeze-in scenario

- Feeble coupling constant $y_{\chi} \rightarrow Making \chi$ thermally decoupled from the plasma
- This *feebleness* \Rightarrow **long lifetime** of A

Freeze-in DM (FIMPs)

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Freeze-in DM : Decay rate

• **Relic abundance** of χ is related to the A decay width Γ_A by

 g_* is the number of relativistic degrees of freedom at temperatures $\mathcal{T} \approx m_2$ (around the A mass)

- In the SM $g_{*}~(100$ GeV) $\simeq 100$ and $g_{*}~(100$ MeV) $\simeq 10$
- Assuming $\chi
 ightarrow$ all DM today i.e. $\Omega_\chi h^2 = 0.11
 ightarrow$ inverse decay width of A as

$$\Gamma^{-1}\left(A
ightarrow \chi + B_{\mathsf{SM}}
ight) \sim \left(rac{m_1}{100 \mathrm{GeV}}
ight) \left(rac{200 \mathrm{GeV}}{m_2}
ight)^2 \left(rac{100}{g_*\left(m_2
ight)}
ight)^{3/2} imes 10^6 \mathrm{~ns} \sim 0.01 \mathrm{~secs}$$

Co-annihiliating DM

- **DM relic abundance** → annihilation between two different species
- f : SM particle, ψ : BSM LLP, χ : DM particle
- Long lifetime \rightarrow set by a suppressed phase space

Figure: Feynman diagram for a co-annihilation scenario[1]

Why Long-Lived-Particle (LLPs)?

Dark matter searches with Long Lived

Particles Rohan Kulkarni

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Asymmetric DM

- DM particle \neq own antiparticle : relic dark matter density \rightarrow particle-antiparticle asymmetry (Like the Baryon asymmetry)
 - DM production \rightarrow non-thermally (out-of-equilibrium process)
- Easiest scenario for DM production using asymmetry
 - Early universe : Particle species $\psi o m_\psi > m_\chi$ with an abundance $\Omega_\psi o$ decays to χ

$$\Omega_\chi\simeq\Omega_\psirac{m_\chi}{m_\psi}$$

Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

BREAK SLIDE

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Signature of "Long-lived particles" at Collider experiments

Rohan

Kulkarni

Detecting Dark-matter

Figure: [3]

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Rohan Kulkarni

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Outgoing

Particle

Figure: Not to scale transverse schematic of a typical collider [1]

Kinematics in a detector

Inner Tracking Detector (ID)

Electromagnetic Calorimeter (ECAL)

Hadronic Calorimeter (HCAL)

Muon System (MS)

Kinematics of LLPs [1]

•
$$d_T = \beta \gamma c \tau$$
, $\gamma = \frac{E}{m} = \frac{1}{\sqrt{1-\beta^2}}$,
 $\beta = \frac{v}{c} = \frac{|\vec{p}_T|}{E}$
• E : Calorimeter, $|\vec{p}_T|$: Track bence

•
$$N(t) = N_0 e^{-\frac{t}{\tau}}$$

•
$$P_{\text{dec}} = \frac{1}{4\pi} \int_{\Delta\Omega} d\Omega \int_{L_1}^{L_2} \frac{1}{d} e^{-\frac{L}{d}}$$

> Rohan Kulkarni

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

detectors FASER MATHUSLA BELLE II

Conclusion

Figure: Cross section of a collider[4]

- Particles produce ightarrow region of ionization ightarrow solid-state / gaseous detectors ightarrow hits.
 - Fit into trajectory \rightarrow track \rightarrow Get charge / momentum

> Rohan Kulkarni

Decays within the tracker

Figure: Fraction of LLPs decaying \rightarrow Left : within 30 cm, Right : between 30 - 100 cm [2]

- Most theories : Predict lifetimes of LLP >> 25 ns.
- Detect them in conventional subsystems $^{\sf due\ to} \longrightarrow {\sf Exponential}$ decay probability

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments

Direct detection

Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Direct detection : Anomalous Ionization

- CLLP \rightarrow Leaves *track* in ID \Rightarrow Direct detection possible
 - If $m_{\text{CLLP}} > m_{\text{proton}} \rightarrow \text{Produced with lower } \beta$ (Compared to : Track forming SM particle)
 - Detect : Slow moving / heavily charged particle \rightarrow Anomalously large $\langle \frac{dE}{dx} \rangle$
 - Bethe-Bloch formula $\left\langle \frac{dE}{dx} \right\rangle \sim -\frac{z^2}{\beta^2} \cdot \left[\ln \left(\frac{\beta^2}{(1-\beta^2)} \right) \beta^2 + C \right]$ (Ionization energy lost per unit distance traveled)

Figure: Anomalous ionization of a heavy CLLP[1]

> Rohan Kulkarni

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Indirect detection I : Displaced Tracks

Figure: Displaced track vs Prompt track[1]

- $\bullet~\mbox{Neutral LLP} \rightarrow \mbox{Transverses}$ some macroscopic distance within ID
 - Decays into charged particle/s →Leaves a *displaced track* or *a displaced vertex* (next slide)

> Rohan Kulkarni

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Indirect detection II : Displaced Vertices

Figure: Displaced vertex vs Prompt vertex[1]

Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

BREAK SLIDE

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors

FASER MATHUSLA BELLE II

Conclusion

LLP specific detectors

FASER

Dark matter searches with Long Lived Particles

Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors

FASER MATHUSLA BELLE II

Conclusion

Figure: Left : Location of FASER w.r.t Atlas, Right : View of FASER in a tunnel[7]

- Goal : Detect LLPs / decay products ightarrow Transversed $\sim 150m$ (Inagurated May 2021)
- Isolation \rightarrow Low SM background (Most SM background : near the ATLAS IP)
- New resolution/parameter space \rightarrow LLP detection.

MATHUSLA

Figure: Schematic of proposed MATHUSLA detector[9]

- $200 \times 200 \times 20 \text{ m}^3$ in size, roughly 100 m above CMS/ATLAS caverns.
- Neutral LLPs : very large lifetimes produced in the collisions \to decay within the volume of MATHUSLA \to displaced vertices could be reconstructed

Dark matter searches with Long Lived Particles Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Belle II (e^+e^- collider)

Figure: Schematic of Belle II electron-positron collider[8]

Dark matter searches with Long Lived Particles

> Rohan Kulkarni

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Displaced vertex signatures

Figure: [10]

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Figure: [10]

Conclusion

Particles Rohan Kulkarni

Dark matter searches with Long Lived

- Why Long-Lived-Particle (LLPs)?
- Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

- LLPs \rightarrow Natural prediction by many theories.
 - LLP searches important : It is a *strong DM candidate*, also to cover entire *spectrum of DM candidates*
- Increase chances of LLP detection,
 - Low SM backgrounds
 - Extra detectors : *far-distance* from collision point \rightarrow *decay products* get an opportunity to be detected
- Very young field : huge potential for discovering different aspects of BSM, both theoretically and experimentally

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Rohan Kulkarni

Why Long-Lived-Particle (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

Lawrence Lee, Christian Ohm, Abner Soffer, Tien-Tien Yu. "Collider Searches for Long-Lived Particles Beyond the Standard Model". arXiv:1810.12602 [hep-ph], 10.1016/j.ppnp.2019.02.006, JPPNP 3695 (2019)

Shankha Banerjee, Biplob Bhattacherjee, Andreas Goudelis, Björn Herrmann, Dipan Sengupta, Rhitaja Sengupta. "Determining the lifetime of long-lived particles at the HL-LHC". arXiv:1912.06669 [hep-ph], 10.1140/epjc/s10052-021-08945-9, Eur. Phys. J. C 81, 172 (2021)

Bjoern Penning. "The Pursuit of Dark Matter at Colliders - An Overview". arXiv:1712.01391 [hep-ex],10.1088/1361-6471/aabea7

http://cds.cern.ch/record/2120661/

Profumo, S. (2017). An introduction to particle dark matter. Singapore: World Scientific.

Griffiths, David (2008). Introduction to elementary particles

Beacham, J et al. "Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report." Journal of Physics G: Nuclear and Particle Physics 47.1 (2019): 010501. Crossref. Web.

> Rohan Kulkarni

Why Long-Lived-Particles (LLPs)?

Lifetime of a particle

Signature of "Long-lived particles" at Collider experiments Direct detection Indirect detection

LLP specific detectors FASER MATHUSLA BELLE II

Conclusion

https://www.facebook.com/belle2collab/photos/cross-section-of-the-belle-iidetectorcredit-kek/2087517408199161/

Curtin, David et al. "Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case." Reports on Progress in Physics 82.11 (2019): 116201. Crossref. Web.

Anastasiia Filimonova, Ruth Schäfer, Susanne Westhoff. "Probing dark sectors with long-lived particles at BELLE II" . 10.1103/PhysRevD.101.095006, https://arxiv.org/abs/1911.03490