- Answer all questions 0)-3).
- Put your name on each sheet submitted.
- Illegible scripts might be ignored.
- The duration of the exam is 180 ming.
- Indicate clearly which question (and part) your respective solution is referring to.

9) Definitions/formulas:
a) Define the grand canonical ensemble in quantum mechanics.
b) State the first law of thermodynamics in terms of E, S, T, μ, N, P, V.
c) Define the efficiency of a general cyclic process (closed curve γ in (T, S)-diagram).

2 Consider the following cyclic process in the (P, V)-diagram:

- $I \rightarrow I$: Isothermal (constant T) expansion.
- II \rightarrow III: Adiabatic expansion.
- III $\rightarrow I V$: Isobaric (constant P) compression.
- IV $\rightarrow I$: Adiabatic compression.

You can assume the equations of state of an ideal gas,

$$
\begin{equation*}
P V=N k_{B} T, \quad E=\frac{3}{2} P V . \tag{1}
\end{equation*}
$$

a) Sketch the process in a (P, V)-diagram, and identify where heat is injected/given off by the system.
b) What is the work ΔW performed by the system in one cycle?
c) What is the heat $\Delta Q_{\text {in }}$ injected into the system in one cycle?
(d) What is the efficiency? \rightarrow finis $(x$

State your answers in $b), c), d$) in terms of the temperatures $T_{I}, \ldots, T_{I V}$ and $v=V_{I I} / V_{I}$.

32 Recall that the energy eigenstates $|n\rangle$ of a single harmonic oscillator have energy $E_{n}=\varepsilon\left(n+\frac{1}{2}\right)$, where $n=0,1,2, \ldots$.
a) Calculate the canonical partition function for one oscillator $Z_{1}(\beta)=\sum_{n} \mathrm{e}^{-\beta E_{n}}$.
b) Calculate the canonical partition function $Z_{N}(\beta)$ for a system of N independent harmonic oscillators in terms of that found for the single oscillator.
c) Calculate the mean energy E.
(d) The free energy is $F=E-T S$. Show that the first law takes the form

$$
\begin{equation*}
d F=-S d T+\mu d N \tag{2}
\end{equation*}
$$

in terms of F (noting that $d V=0$ in this question). Give a formula for the chemical potential μ in terms of a derivative of $F(T, N)$. Using the formula $F(\beta, N)=-\beta^{-1} \log Z_{N}(\beta)$ [where $\beta^{-1}=k_{B} T$], calculate μ for the present system.

V^{2}
G A system has N states occupied with probabilities $p_{n}, n=1, \ldots, N$. The n-th state has energy E_{n} and particle number n. The entropy is defined as $S=-k_{B} \sum_{n} p_{n} \log p_{n}$, the average energy is $U=\sum_{n} E_{n} p_{n}$, and the average particle number is $v=\sum_{n} n p_{n}$. Using the method of Lagrange multipliers, determine the probability distribution which maximizes S for fixed U, v, and show that it is given by

$$
\begin{equation*}
p_{n}=\frac{1}{Y} \mathrm{e}^{-\beta\left(E_{n}-\mu n\right)} \tag{3}
\end{equation*}
$$

for some β, μ, Y.

Klausur (EXAM)

- Answer all questions 0)-3).
- Put your name on each sheet submitted.
- Illegible scripts might be ignored.
- The duration of the exam is 180 mins .
- Indicate clearly which question (and part) your respective solution is referring to.

0) Definitions/formulas:
a) Define the grand canonical ensemble in quantum mechanics.
b) State the first law of thermodynamics in terms of E, S, T, μ, N, P, V.
c) Define the efficiency of a general cyclic process (closed curve γ in (T, S)-diagram).
1) Consider the following cyclic process in the (P, V)-diagram:

- $I \rightarrow I I$: Isothermal (constant T) expansion.
- II \rightarrow III: Adiabatic expansion.
- III $\rightarrow I V$: Isobaric (constant P) compression.
- IV $\rightarrow I$: Adiabatic compression.

You can assume the equations of state of an ideal gas,

$$
\begin{equation*}
P V=N k_{B} T, \quad E=\frac{3}{2} P V \tag{1}
\end{equation*}
$$

a) Sketch the process in a (P, V)-diagram, and identify where heat is injected/given off by the system.
b) What is the work ΔW performed by the system in one cycle?
c) What is the heat $\Delta Q_{\text {in }}$ injected into the system in one cycle?
d) What is the efficiency?

State your answers in $b), c), d$) in terms of the temperatures $T_{I}, \ldots, T_{I V}$ and $v=V_{I I} / V_{I}$.
2) Recall that the energy eigenstates $|n\rangle$ of a single harmonic oscillator have energy $E_{n}=\varepsilon\left(n+\frac{1}{2}\right)$, where $n=0,1,2, \ldots$.
a) Calculate the canonical partition function for one oscillator $Z_{1}(\beta)=\sum_{n} \mathrm{e}^{-\beta E_{n}}$.
b) Calculate the canonical partition function $Z_{N}(\beta)$ for a system of N independent harmonic oscillators in terms of that found for the single oscillator.
c) Calculate the mean energy E.
d) The free energy is $F=E-T S$. Show that the first law takes the form

$$
\begin{equation*}
d F=-S d T+\mu d N \tag{2}
\end{equation*}
$$

in terms of F (noting that $d V=0$ in this question). Give a formula for the chemical potential μ in terms of a derivative of $F(T, N)$. Using the formula $F(\beta, N)=-\beta^{-1} \log Z_{N}(\beta)$ [where $\left.\beta^{-1}=k_{B} T\right]$, calculate μ for the present system.
3) A system has N states occupied with probabilities $p_{n}, n=1, \ldots, N$. The n-th state has energy E_{n} and particle number n. The entropy is defined as $S=-k_{B} \sum_{n} p_{n} \log p_{n}$, the average energy is $U=\sum_{n} E_{n} p_{n}$, and the average particle number is $v=\sum_{n} n p_{n}$. Using the method of Lagrange multipliers, determine the probability distribution which maximizes S for fixed U, v, and show that it is given by

$$
\begin{equation*}
p_{n}=\frac{1}{Y} \mathrm{e}^{-\beta\left(E_{n}-\mu n\right)} \tag{3}
\end{equation*}
$$

for some β, μ, Y.

Probeklausur (MOCK EXAM)

- You need at least 50 points to pass this exam
- Put your name on each sheet submitted.
- Illegible scripts might be ignored.
- The duration of the exam is 180 mins.
- Indicate clearly which question (and part) your respective solution is referring to.

1) (25 points) Recall the first law of thermodynamics:

$$
\begin{equation*}
T d S=d E+P d V-\mu d N \tag{1}
\end{equation*}
$$

a) State the "microscopic" (i.e. statistical mechanics-) definition of the entropy S in the context of the classical micro canonical ensemble. State what it means for S to be an "extensive quantity".
b) Derive the relations

$$
\begin{equation*}
\left.\frac{\partial N}{\partial E}\right|_{V, S}=\frac{1}{\mu},\left.\quad \frac{\partial N}{\partial S}\right|_{V, E}=-\frac{T}{\mu},\left.\quad \frac{\partial N}{\partial V}\right|_{E, S}=\frac{P}{\mu}, \tag{2}
\end{equation*}
$$

from the first law (Hint: rewrite the first law in terms of the differentials $d E, d V, d S$.).
c) Introduce the free energy by $F=E-T S$, viewed as a function of T, N, V. Write the first law in terms of F instead of E.
d) Write the first law (1) as $d S=\ldots$. Applying the exterior differential d to the resulting equation and using $d(d S)=0$, derive the relation

$$
\begin{equation*}
\left.\frac{\partial T}{\partial V}\right|_{E, N}-\left.P \frac{\partial T}{\partial E}\right|_{V, N}+\left.T \frac{\partial P}{\partial E}\right|_{V, N}=0 \tag{3}
\end{equation*}
$$

(Hint: Keep in mind that $d E d V=-d V d E$.)
2) (25 points) Consider the following cyclic process:

- $I \rightarrow I I$: Adiabatic (constant S) expansion
- II $\rightarrow I I I$: Isochoric (constant V) cooling
- III $\rightarrow I V$: Adiabatic (constant S) compression
- $I V \rightarrow I$: Isothermal (constant T) expansion

Throughout it is assumed that the particle number N remains constant (so that $d N=0$ in the entire process), and we assume that the equations of state of an ideal gas hold:

$$
\begin{equation*}
P V=N k_{B} T, \quad E=\frac{3}{2} P V \tag{4}
\end{equation*}
$$

a) Show that $P V=c s t$. on isotherms and $P V^{5 / 3}=c s t$. on adiabatics using the equation(s) of state and the first law $T d S=d E+P d V$. (If you cannot do this, carry on with b) $-e$) assuming these results.)
b) Sketch the process in a (P, V)-diagram, and identify where heat is injected/given off by the system.
c) What is the work ΔW performed by the system in one cycle?
d) What is the heat $\Delta Q_{\text {in }}$ injected into the system in one cycle?
e) What is the efficiency $\eta=\frac{\Delta W}{\Delta Q_{\text {in }}}$?

State your answers in $c)-e)$ in terms of $N, T_{I}, V_{I}, V_{I I}\left(=V_{I I I}\right), V_{I V}$.

人)
(25 points) We consider a gas of charged particles of unit charge $\pm q$. The eigenstates of the charge operator \hat{Q} and Hamiltonian \hat{H} are $\left|n_{+}, n_{-}\right\rangle$with

$$
\begin{equation*}
\hat{H}\left|n_{+}, n_{-}\right\rangle=\varepsilon_{n_{+}, n_{-}}\left|n_{+}, n_{-}\right\rangle, \quad \hat{Q}\left|n_{+}, n_{-}\right\rangle=q\left(n_{+}-n_{-}\right)\left|n_{+}, n_{-}\right\rangle, \tag{5}
\end{equation*}
$$

where $n_{+}, n_{-} \geq 0$ are integers that have the interpretation of the number of positively resp. negatively charged particles in the state. We consider a density matrix of the form

$$
\begin{equation*}
\rho=\sum_{n_{+}, n_{-} \geq 0} p_{n_{+}, n_{-} \mid}\left|n_{+}, n_{-}\right\rangle\left\langle n_{+}, n_{-}\right| \tag{6}
\end{equation*}
$$

where $\operatorname{Tr} \rho=1$ is required as usual, and where expectation values are defined as usual by $\langle A\rangle=$ $\operatorname{Tr}(A \rho)$. The information entropy is defined by $S(\rho)=-k_{B} \operatorname{Tr} \rho \log \rho$, the mean energy by $E=\langle\hat{H}\rangle$ and the mean charge by $Q=\langle\hat{Q}\rangle$.
a) Using the method of Lagrange multipliers, show that the density matrix which maximizes $S(\rho)$ for fixed E, Q is of the form $p_{n_{+}, n_{-}}=\frac{1}{Y} \exp \left(-\beta\left[\varepsilon_{n_{+}, n_{-}}+\Phi q\left(n_{+}-n_{-}\right)\right]\right)$, or equivalently $\rho=\frac{1}{Y} \exp [-\beta(\hat{H}+\Phi \hat{Q})]$. (Here β, Φ, Y are constants.)
b) Define $G=-k_{B} T \log Y(T, \Phi)$, where $\beta^{-1}=k_{B} T$. Using $Y=\operatorname{Tr} \exp \left[-(\hat{H}+\Phi \hat{Q}) /\left(k_{B} T\right)\right]$, show that

$$
\begin{equation*}
S=-\left.\frac{\partial G}{\partial T}\right|_{\Phi}, \quad Q=-\left.\frac{\partial G}{\partial \Phi}\right|_{T}, \tag{7}
\end{equation*}
$$

where S, Q are defined as above.
c) For a charged gas at fixed volume, the first law of thermodynamics is $T d S=d E-\Phi d Q$. What is the physical meaning of Φ ? Show that if we define $G=E-T S-\Phi Q$, then $G=G(T, \Phi)$ satisfies $d G=-S d T-Q d \Phi$.
(d) Verify the relations (7) using $d G=-S d T-Q d \Phi$.
123...Nul
4) 25 points) A directed polymer consists of atoms $i=0,1,2, \ldots, N$ at positions $\left(x_{i}, y_{i}\right) \in \mathbb{Z}^{2}$ of a square lattice. The atom at the origin is fixed at the position $x_{0}=y_{0}=0$ and the other atoms are chained together such that $x_{i}-\overline{x_{i-1} \equiv 1}$ and $\left|y_{i}-y_{i-1}\right|=1$. This polymer is hence oriented in the x-direction and it does not self-intersect.

Determine the total number of micro-states of the polymer.
b) Determine the number of microstates $W(y)$ having the property that $y_{N}=y$. Hint: Write y_{N} in terms of $\sigma_{i}=y_{i}-y_{i-1} \in\{ \pm 1\}$, where $i=1, \ldots, N$, and then in terms of the number v of +1 's in $\left\{\sigma_{i}\right\}$.
Calculate the typical deflection of the chain end,

$$
\begin{equation*}
\left\langle y_{N}^{2}\right\rangle=\frac{\sum_{y} y^{2} W(y)}{\sum_{y} W(y)} . \tag{8}
\end{equation*}
$$

Hint: Consider the partition function of the canonical ensemble $Z(\beta)=\sum_{y} e^{\beta y} W(y)$. Write $\left\langle y_{N}^{2}\right\rangle$ in terms of β-derivatives) of $Z(\beta)$.

$$
\left|y_{1}-y_{0}\right|-1 \Rightarrow y_{1}-y_{0}=1
$$

Probeklausur (Mock Exam) $16 / 17$.

- You need at least 50 points to pass this exam
- Put your name on each sheet submitted.
- Illegible scripts might be ignored.
- The duration of the exam is 180 mins.
- Indicate clearly which question (and part) your respective solution is referring to.

1. (25 points) Recall the first law of thermodynamics:

$$
\begin{equation*}
T d S=d E+P d V-\mu d N \tag{1}
\end{equation*}
$$

(a) State the "microscopic" (i.e. statistical mechanics-) definition of the entropy S in the context of the classical micro canonical ensemble. State what it means for S to be an "extensive quantity".
b) Derive the relations

$$
\begin{equation*}
\left.\frac{\partial N}{\partial E}\right|_{V, S}=\frac{1}{\mu},\left.\quad \frac{\partial N}{\partial S}\right|_{V, E}=-\frac{T}{\mu},\left.\quad \frac{\partial N}{\partial V}\right|_{E, S}=\frac{P}{\mu}, \tag{2}
\end{equation*}
$$

from the first law (Hint: rewrite the first law in terms of the differentials $d E, d V, d S$.).
2) Introduce the free energy by $F=E-T S$, viewed as a function of T, N, V. Write the first law in terms of F instead of E.
(d)) Write the first law (1) as $d S=\ldots$. Applying the exterior differential d to the resulting equation and using $d(d S)=0$, derive the relation

$$
\begin{equation*}
\left.\frac{\partial T}{\partial V}\right|_{E, N}-\left.P \frac{\partial T}{\partial E}\right|_{V, N}+\left.T \frac{\partial P}{\partial E}\right|_{V, N}=0 . \tag{3}
\end{equation*}
$$

(Hint: Keep in mind that $d E d V=-d V d E$.)
2) (25 points) Consider the following cyclic process:

- $I \rightarrow I I$: Adiabatic (constant S) expansion
- II $\rightarrow I I I$: Isochoric (constant V) cooling
- III $\rightarrow I V$: Adiabatic (constant S) compression
- IV $\rightarrow I$: Isothermal (constant T) expansion

Throughout it is assumed that the particle number N remains constant (so that $d N=0$ in the entire process), and we assume that the equations of state of an ideal gas hold:

$$
\begin{equation*}
P V=N k_{B} T, \quad E=\frac{3}{2} P V . \tag{4}
\end{equation*}
$$

a) Show that $P V=c s t$. on isotherms and $P V^{5 / 3}=c s t$. on adiabatics using the equation(s) of state and the first law $T d S=d E+P d V$. (If you cannot do this, carry on with b) $-e$) assuming these results.)
b) Sketch the process in a (P, V)-diagram, and identify where heat is injected/given off by the system.
c) What is the work ΔW performed by the system in one cycle? MAf of wend
d) What is the heat $\Delta Q_{\text {in }}$ injected into the system in one cycle?
e) What is the efficiency $\eta=\frac{\Delta W}{\Delta Q_{\text {in }}}$?

State your answers in $c)-e)$ in terms of $N, T_{l}, V_{l}, V_{I I}\left(=V_{I I I}\right), V_{I V}$.
1
3) (25 points) We consider a gas of charged particles of unit charge $\pm q$. The eigenstates of the charge operator \hat{Q} and Hamiltonian \hat{H} are $\left|n_{+}, n_{-}\right\rangle$with

$$
\begin{equation*}
\hat{H}\left|n_{+}, n_{-}\right\rangle=\varepsilon_{n_{+}, n_{-}}\left|n_{+}, n_{-}\right\rangle, \quad \hat{Q}\left|n_{+}, n_{-}\right\rangle=q\left(n_{+}-n_{-}\right)\left|n_{+}, n_{-}\right\rangle, \tag{5}
\end{equation*}
$$

where $n_{+}, n_{-} \geq 0$ are integers that have the interpretation of the number of positively resp. negatively charged particles in the state. We consider a density matrix of the form

$$
\begin{equation*}
\rho=\sum_{n_{+}, n_{-} \geq 0} p_{n_{+}, n_{-}}\left|n_{+}, n_{-}\right\rangle\left\langle n_{+}, n_{-}\right| \tag{6}
\end{equation*}
$$

where $\operatorname{Tr} \rho=1$ is required as usual, and where expectation values are defined as usual by $\langle A\rangle=$ $\operatorname{Tr}(A \rho)$. The information entropy is defined by $S(\rho)=-k_{B} \operatorname{Tr} \rho \log \rho$, the mean energy by $E=\langle\hat{H}\rangle$ and the mean charge by $Q=\langle\hat{Q}\rangle$.

$$
u\langle s\rangle
$$

Using the method of Lagrange multipliers, show that the density matrix which maximizes $S(\rho)$ for fixed E, Q is of the form $p_{n_{+}, n_{-}}=\frac{1}{Y} \exp \left(-\beta\left[\varepsilon_{n_{+}, n_{-}}+\Phi q\left(n_{+}-n_{-}\right)\right]\right.$, or equivalently $\rho=\frac{1}{Y} \exp [-\beta(\hat{H}+\Phi \hat{Q})]$. (Here β, Φ, Y are constants.)
b) Define $G=-k_{B} T \log Y(T, \Phi)$, where $\beta^{-1}=k_{B} T$. Using $Y=\operatorname{Tr} \exp \left[-(\hat{H}+\Phi \hat{Q}) /\left(k_{B} T\right)\right]$,
show that

$$
\begin{equation*}
S=-\left.\frac{\partial G}{\partial T}\right|_{\Phi}, \quad Q=-\left.\frac{\partial G}{\partial \Phi}\right|_{T}, \tag{7}
\end{equation*}
$$

where S, Q are defined as above.
$2 \times$ For a charged gas at fixed volume, the first law of thermodynamics is $T d S=d E-\Phi d Q$. What is the physical meaning of Φ ? Show that if we define $G=E-T S-\Phi Q$, then $G=G(T, \Phi)$ satisfies $d G=-S d T-Q d \Phi$.
(ब) Verify the relations (7) using $d G=-S d T-Q d \Phi$.
4) (25 points) The Hamiltonian of a gas of N classical, relativistic particles moving in one dimension is

$$
\begin{equation*}
H\left(q_{1}, \ldots, q_{N}, p_{1}, \ldots, p_{N}\right)=\sum_{i=1}^{N}\left\{c\left|p_{i}\right|+U\left(q_{i}\right)\right\} . \tag{8}
\end{equation*}
$$

Here $\left(p_{1}, \ldots, p_{N}\right)$ are the momenta of the particles, and $\left(q_{1}, \ldots, q_{N}\right)$ the positions (i.e. $q_{i}, p_{i} \in \mathbb{R}$ for all $i=1, \ldots, N)$. The potential $U(q)$ is $=0$ if $q \in[0, L]$ and $=\infty$ otherwise and effectively restricts the particles to the interval $[0, L]$.
a) The micro-canonical partition function for distinguishable particles is

$$
\begin{equation*}
W(E, L, N)=h^{-N} \int_{E \leq H\left(\left\{p_{i}\right\},\left\{q_{j}\right\}\right) \leq E+\Delta E} d q_{1} \ldots d q_{N} d p_{1} \ldots d p_{N} \tag{9}
\end{equation*}
$$

Perform first the q_{i}-integrals.
b) Next, perform the p_{i}-integrals assuming that ΔE is small compared to E. You may use that the volume of a layer of thickness $\delta \ll R$ surrounding the surface of an N-dimensional hyperpyramid (the set defined by $x_{i} \geq 0, \sum_{i=1}^{N} x_{i} \leq R$) is given by $\sim \delta \cdot \sqrt{N} R^{N-1} /(N-1)$!. Do not forget to take into account that each p_{i} can be negative or positive!
c) How does the partition function W have to be modified if the particles are indistinguishable?
d) Compute the entropy $S=k_{B} \log W$ in the micro canonical ensemble for indistinguishable particles, and verify that

$$
\begin{equation*}
S(E, L, N)=N k_{B} \log \left(\frac{2 e^{2} L E}{h c N^{2}}\right) \tag{10}
\end{equation*}
$$

up to subleading terms in the large N limit. (Hint: Use Stirling's approximation $N!\sim N^{N} e^{-N}$.)
e) Use the result of item 2d) and the first law of thermodynamics to derive

$$
\begin{equation*}
P=\frac{N k_{B} T}{L} \tag{11}
\end{equation*}
$$

for the pressure. (Hint: First derive $P=T \partial S / \partial L_{E, N}$.)

1) Similarly, derive the relation $1 / T=N k_{B} / E$.
g) Argue that the probability density $\mathscr{P}(p)$ for finding a particle with momentum p is given by

$$
\begin{equation*}
\mathscr{P}(p)=\frac{L}{N h} \cdot \frac{W(E-c|p|, L, N-1)}{W(E, L, N)} . \tag{12}
\end{equation*}
$$

(Hint: If one particle has momentum p, what is the energy left for the remaining particles?) From this, derive

$$
\begin{equation*}
\mathscr{P}(p) \sim \frac{c}{2 k_{B} T} e^{-c|p| /\left(k_{B} T\right)} . \tag{13}
\end{equation*}
$$

(Hint: Use the relation $(1+a / N)^{N} \sim e^{a}$ for large N, and the relation between E and T derived before. For W, use the result of question 2d))

