Problem. Vector current for antifermions

In this exercise you will show that the vector current of a Dirac fermion with four-momentum p =
(po, P) is directly related to the vector current of its antifermion with four-momentum p’ = (pg, —p).

In the course of the exercise you will encounter the charge conjugate Dirac spinor, defined as

e = C@T, where C' is the charge conjugation operator. It is convenient to work in the Dirac
representation of the Clifford algebra, where C' = ivyap.

a)

b)

Show that the charge conjugation operator fulfills the following relations
—c=CcT=ct=cCc". (2)
Here C~! is the inverse of C.

Using Eq. (2), show that the vector current of a Dirac field, j# = 1yt is equal to the vector
current of the charge conjugate field, 55 = vy, i.e., that

gt =gk 3)

For the spinors in momentum space, the charge conjugation properties of the fermion field
imply that

us(p) = Cv; (p). (4)

Use this relation to show the the vector current of a fermion with momentum p is connected
to the vector current of its antifermion with momentum p’ via

Us()Ypus(p) = s (0 )V s (p') - (5)

Hint: A relation between spinors with opposite momenta was derived in the lecture.


Rohan Kulkarni

Rohan Kulkarni

Rohan Kulkarni

Rohan Kulkarni
.


ProBlem 2. Vector current for antifermions

In this exercise you will show that the vector current of a Dirac fermion with four-momentum p =
(po, P) is directly related to the vector current of its antifermion with four-momentum p’ = (pg, —p).

In the course of the exercise you will encounter the charge conjugate Dirac spinor, defined as

—T : : : : : : :
« = CvY , where C is the charge conjugation operator. It is convenient to work in the Dirac
representation of the Clifford algebra, where C' = iyy7.

a) Show that the charge conjugation operator fulfills the following relations

—c=CcT=ct=c1. (2)

Here C—! is the inverse of C.

| Since C=1 Jo We have -1

b) Using Eq. (2), show that the vector current of a Dirac field, j* = Wy, is equal to the vector
current of the charge conjugate field, jo = ¥ y*%., i.e., that

gt =3t . (3)
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c¢) For the spinors in momentum space, the charge conjugation properties of the fermion field
imply that

us(p) = O, (p). (4)

Use this relation to show the the vector current of a fermion with momentum p is connected
to the vector current of its antifermion with momentum p’ via

s (p)yutis(p) = Ts (@' )" s (p') - (5)

Hint: A relation between spinors with opposite momenta was derived in the lecture.
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