Problem. Vector current for antifermions

In this exercise you will show that the vector current of a Dirac fermion with four-momentum $p=$ $\left(p_{0}, \vec{p}\right)$ is directly related to the vector current of its antifermion with four-momentum $p^{\prime}=\left(p_{0},-\vec{p}\right)$.

In the course of the exercise you will encounter the charge conjugate Dirac spinor, defined as $\psi_{c} \equiv C \bar{\psi}^{\top}$, where C is the charge conjugation operator. It is convenient to work in the Dirac representation of the Clifford algebra, where $C=i \gamma_{2} \gamma_{0}$.
a) Show that the charge conjugation operator fulfills the following relations

$$
\begin{equation*}
-C=C^{T}=C^{\dagger}=C^{-1} . \tag{2}
\end{equation*}
$$

Here C^{-1} is the inverse of C.
b) Using Eq. (2), show that the vector current of a Dirac field, $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi$, is equal to the vector current of the charge conjugate field, $j_{c}^{\mu}=\bar{\psi}_{c} \gamma^{\mu} \psi_{c}$, i.e., that

$$
\begin{equation*}
j^{\mu}=j_{c}^{\mu} \tag{3}
\end{equation*}
$$

c) For the spinors in momentum space, the charge conjugation properties of the fermion field imply that

$$
\begin{equation*}
u_{s}(p)=C \bar{v}_{s}^{\top}(p) \tag{4}
\end{equation*}
$$

Use this relation to show the the vector current of a fermion with momentum p is connected to the vector current of its antifermion with momentum p^{\prime} via

$$
\begin{equation*}
\bar{u}_{s}(p) \gamma_{\mu} u_{s}(p)=\bar{v}_{s}\left(p^{\prime}\right) \gamma^{\mu} v_{s}\left(p^{\prime}\right) . \tag{5}
\end{equation*}
$$

Hint: A relation between spinors with opposite momenta was derived in the lecture.

Problem 2. Vector current for antifermions
In this exercise you will show that the vector current of a Dirac fermion with four-momentum $p=$ $\left(p_{0}, \vec{p}\right)$ is directly related to the vector current of its antifermion with four-momentum $p^{\prime}=\left(p_{0},-\vec{p}\right)$. In the course of the exercise you will encounter the charge conjugate Dirac spinor, defined as $\psi_{c} \equiv C \bar{\psi}^{\top}$, where C is the charge conjugation operator. It is convenient to work in the Dirac representation of the Clifford algebra, where $C=i \gamma_{2} \gamma_{0}$.
a) Show that the charge conjugation operator fulfills the following relations

$$
\begin{equation*}
-C=C^{T}=C^{\dagger}=C^{-1} \tag{2}
\end{equation*}
$$

Here C^{-1} is the inverse of C.
\rightarrow Since $C=i \gamma_{2} \gamma_{0}$ we have:

$$
\begin{aligned}
& \text { Since } C=i \gamma_{2} \gamma_{0} \text { we have: } \\
& -c=-i \gamma_{2} \gamma_{0}=i \gamma_{0} \gamma_{2} \Rightarrow-c c=i \gamma_{0} \gamma_{2} i \gamma_{2} \gamma_{0}=-\gamma_{0} \tilde{\gamma}_{2} \gamma_{2} \gamma_{2} \gamma_{0}=\left(\gamma_{0}\right)^{2}=\mathbb{1} \Rightarrow c^{-1}=c
\end{aligned}
$$

In the Dirac representation it becomes clear, that $C=\left[0_{-1}^{-1}\right]$ so that $C=C^{1}=C^{+1}$
$\begin{aligned} & \text { b) Using Eq. (2), show that the vector current of a Dirac field, } j^{\mu}=\bar{\psi} \gamma^{\mu} \psi \text {, is equal to the vector } \\ & \text { current of the charge conjugate field, } j_{c}^{\mu}=\bar{\psi}_{c} \gamma^{\mu} \psi_{c} \text {, ie., that } \\ & j^{\mu}=j_{c}^{\mu} .\end{aligned}$
$\left(\gamma^{2}\right)^{\top}=-\gamma^{2}$

$$
\begin{equation*}
j^{\mu}=j_{c}^{\mu} . \tag{3}
\end{equation*}
$$

$; \bar{\psi} \subseteq\left(-i \gamma^{2} \psi^{\top}(x)\right)^{\top} \gamma^{0}=i \psi(x)^{\top}\left(-\gamma^{2}\right) \gamma^{0}$

$$
\Rightarrow \bar{\Psi}_{c} \gamma^{\mu} \psi_{c}=\psi(x)^{\top}\left(-\gamma^{\top}\right) \gamma^{0} \gamma^{\mu} \gamma^{2} \psi^{\top}(x)=\bar{\psi}(x) \gamma^{0}\left(-\gamma^{2} \gamma^{0} \gamma^{\mu} \gamma^{\top}\right)^{\top} \psi(x)=\overline{\psi(x)} \gamma^{0}\left(\gamma^{0} \gamma^{2} \gamma^{\mu} \gamma^{\top}\right)^{\top} \psi(x)
$$

$$
=\overline{\Psi(x)} \gamma^{0}\left(\gamma^{0} \gamma^{2}\left(-\gamma^{2} \gamma^{\mu}+2 n^{\mu^{2}} \mathbb{1}\right)\right)^{\top} \psi(x)=\overline{\Psi(x)} \gamma^{0}\left(\gamma^{0} \gamma^{\mu}+2 n^{\mu 2} \gamma^{0} \gamma^{2}\right)^{\top} \psi(x)
$$

The term in the transposed bracket is $\left(\gamma^{\circ} \gamma^{\mu}\right)^{\top}$ for $\mu \neq 2$ \& $-\gamma^{0} \gamma^{\mu}$ for $\mu=2$, So that we can write this (γ^{2} is purely complex entries)

$$
j_{c}^{\mu}=\bar{\psi}_{c} \gamma^{\mu} \psi_{c}=\bar{\psi}(x) \gamma^{0}\left(\gamma^{0} \gamma^{\mu}\right)^{\top} \psi(x)=\bar{\psi}(x) \gamma^{\mu} \psi(x)=j^{\mu}
$$

c) For the spinors in momentum space, the charge conjugation properties of the fermion field imply that

$$
\begin{equation*}
u_{s}(p)=C \bar{v}_{s}^{\top}(p) \tag{4}
\end{equation*}
$$

Use this relation to show the the vector current of a fermion with momentum p is connected to the vector current of its antifermion with momentum p^{\prime} via

$$
\begin{equation*}
\bar{u}_{s}(p) \gamma_{\mu} u_{s}(p)=\bar{v}_{s}\left(p^{\prime}\right) \gamma^{\mu} v_{s}\left(p^{\prime}\right) \tag{5}
\end{equation*}
$$

Hint: A relation between spinors with opposite momenta was derived in the lecture.
Using $u_{s}(p)=C \bar{v}_{s}(p)^{\top}=C \gamma^{0} v_{s}(p)^{\top}$ we find $\overline{u_{s}(p)}=v_{s}(p)^{\top}\left(\gamma^{0}\right)^{\top} C^{\top} \gamma^{0}$

$$
=-V_{s}(p)^{\top} \gamma^{0} C \gamma^{0}=V_{s}(p)^{\top} C
$$

As a consequence of this: $\overline{U_{s}(p)} \gamma_{\mu} U_{s}(p)=V_{s}(p)^{\top} C \gamma_{\mu} C{\left.\overline{V_{s}(p}\right)^{\top}}_{\top}=\overline{V_{s}(p)}\left(C \gamma_{\mu} C\right)^{\top} v_{s}(p)$
Now we Use: $V_{S}(p)=-\gamma^{0} V_{S}\left(p^{0}\right), \quad \overline{V_{S}(p)}=\overline{V_{5}(p)}\left(-\gamma^{0}\right)$ so that:

$$
\begin{aligned}
\overline{u_{s}(p)} \gamma_{\mu} u_{s}(p) & =\overline{v_{s}\left(p^{\prime}\right)} \gamma^{0} C \gamma_{\mu}^{\top} C \gamma^{0} v_{s}\left(p^{\prime}\right)=\overline{v_{s}\left(p^{\prime}\right)} \gamma^{2} \gamma_{\mu}^{\top} \gamma^{2} v_{s}\left(p^{\prime}\right)=\eta_{\mu \nu} \overline{v_{s}\left(p^{\prime}\right)} \gamma^{2}\left(\gamma^{\nu}\right)^{\top} \gamma^{2} v_{s}\left(p^{\prime}\right) \\
& =\eta_{\mu \nu} \overline{v_{S}\left(p^{\prime}\right)}\left(\gamma^{2} \gamma^{\nu} \gamma^{2}\right)^{\top} v_{s}\left(p^{\prime}\right)=\eta_{\mu \nu} \overline{v_{s}\left(p^{\prime}\right)}\left(\gamma^{\nu}+2 n^{\nu} \gamma^{2}\right)^{\top} v_{s}\left(p^{\prime}\right)
\end{aligned}
$$

$$
=\eta^{\mu \nu} \overline{V_{s}\left(p^{\prime}\right)} n_{\nu_{\alpha}} \gamma^{\alpha} V_{s}\left(p^{\prime}\right)=\delta_{\alpha}^{\mu} \overline{V_{s}\left(p^{\prime}\right)} \gamma^{\alpha} V_{s}\left(p^{\prime}\right)=\overline{V_{s}\left(p^{\prime}\right)} \gamma^{\mu} V_{s}\left(p^{\prime}\right)
$$

