Parity transformations of Fermion bilinears

Problem statement

We have

$$
\psi(t, \vec{x}) \xrightarrow{\mathcal{P}} \eta \gamma^{0} \psi(t,-\vec{x})
$$

where $\eta \in \mathbb{C}$ and $|\eta|=1$
(a) Derive the transformation properties of the following fermion bilinears under parity:
(a) Pseudo-scalar current: $\bar{\psi} i \gamma_{5} \psi$
(b) Axial-vector current: $\bar{\psi} \gamma^{\mu} \gamma_{5} \psi$

Which structures are invariant under a Parity transformation, and which are not? Check it explicitly.
Hints: First of all, check that $\bar{\psi}(t, \vec{x}) \xrightarrow{\mathcal{P}} \eta^{*} \bar{\psi}(t,-\vec{x}) \gamma^{0}$. Then, you should make use of the properties of the γ matrices as representations of the Clifford algebra, in particular, $\left(\gamma^{0}\right)^{2}=1 ;\left\{\gamma^{0}, \gamma^{k}\right\}=0$
(b) Show explicitly that electromagnetic fermion interactions are invariant under CP transformations.
Hint: Remember that under charge conjugation: $C \bar{\psi} \gamma^{\mu} \psi C^{-1}=$ $-\bar{\psi} \gamma^{\mu} \psi$ and $C A_{\mu} C^{-1}=-A_{\mu}$
(c) Show that the helicity of Dirac fermion changes sign under space reflection but not under time reversal.
Hint: remember the helicity operator is defined as $\hat{\Lambda}=\frac{\vec{\Sigma} \cdot \vec{p}}{|\vec{p}|}$ with $\overrightarrow{\hat{\Sigma}}=\frac{1}{2}\left(\begin{array}{cc}\sigma^{i} & \\ & \sigma^{i}\end{array}\right)$ the spin operator. To check the behavior under time reversal, adopt explicit expressions for the $u(p)$ spinor and restrict to the case $p_{x}=0=p_{y}$.
[P1.] Parity transformations of Fermion bilinears.

$$
\psi(t, \vec{x}) \stackrel{P}{\longrightarrow} \eta \gamma^{0} \psi(t,-\vec{x}) \quad \begin{array}{r}
n \in C \\
|n|=1
\end{array}
$$

(a) Derive the transformation properties for the following fermion bilinear under parity
\rightarrow Pseudo-scaler current : $\bar{\psi}_{i} r_{5} \psi$
\rightarrow Axial-vector current : $\bar{\psi} \gamma^{\mu} \gamma_{5} \psi$
Which structures are invariant under a Parity transfo, which

- aven't?
\rightarrow Let's check the hint:

$$
\begin{aligned}
& \bar{\psi}(t, \vec{x})=\psi^{+}(t, \vec{x}) \gamma^{0} \xrightarrow{P}\left(\eta \gamma^{0} \psi(t, \vec{x})\right)^{+} \gamma^{0} \\
& =e^{*} \psi^{+}(t,-\vec{x}) \gamma^{0} \gamma^{0} \\
& =n^{*} \bar{\Psi}(t,-\vec{x}) r^{0} \\
& \rightarrow \underset{\sim}{\bar{\psi}(t, \bar{x})} i \gamma_{5} \xrightarrow{\psi(t, \vec{x}),} \xrightarrow{P} \underbrace{*} \bar{\psi}(t,-\vec{x}) i \gamma^{0} \gamma^{0} \gamma^{1} \gamma^{2} \gamma_{\eta}^{3} \gamma^{0} \psi(t,-\vec{x}) \\
& =|n|^{2} \bar{\psi}\left(t_{1}-\vec{x}\right) i(-1) \gamma^{5} \varphi(t-\vec{x}) \\
& =\mid \pi 1^{2} \Psi(t, \vec{\pi}):(-1) \\
& =-\bar{\psi}(t,-\vec{x}) i \gamma^{5} \psi(t,-\vec{x}) \\
& 4 \text { Gets an addition Not invariant. } \\
& \left.\rightarrow \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \xrightarrow{P} \overline{\psi(t,-\vec{x}} \gamma^{0} \gamma^{\mu} \gamma_{5} \gamma^{0} \psi(t,-\vec{x})=\overline{\psi(t,-\vec{x}}\right)\left(-\left(\gamma^{\mu} \gamma_{5}^{\top}\right) \psi(t,-\vec{x})\right. \\
& = \begin{cases}-\overline{\psi(t,-\vec{x})} \gamma^{0} \gamma_{5} \psi(t, \vec{x}) & \mu=0 \\
\psi(t, \bar{x}) \gamma_{i} \gamma_{5} \psi(t,-\vec{x}) & \mu=i \in\{1,2,3] \rightarrow \text { Spdial com } \quad \text { are invanant. }\end{cases}
\end{aligned}
$$

b) Show explicitly that electromagnetic fermion interactions are invariant under CP transformotions.
Hint: remember from the lecture that under charge conjugation: $C \bar{\psi} \gamma^{\mu} \psi C^{-1}=-\bar{\psi} \gamma^{\mu} \psi$ and $C A_{\mu} C^{-1}=-A_{\mu}$.

The interaction term is given by (for QED): $\bar{\psi} \notin \psi$

$$
\begin{aligned}
& \bar{\psi} \propto \psi \xrightarrow{\rho} \bar{\psi}(t,-x) \gamma^{0} A_{0}(t,-\vec{x}) \psi(t,-\vec{x})-\bar{\psi}(t,-x) \gamma^{i}\left(-A_{i}(t,-\vec{x})\right) \psi(t,-\vec{x}) \\
& \xrightarrow{C}-\psi(t,-\vec{x}) \gamma^{0} \psi(t,-\vec{x})\left(-A_{0}(t,-\vec{x})\right)+\bar{\psi}(t,-\vec{x}) \gamma_{i} \psi(t,-\vec{x}) A_{i}(t, \vec{x}) \\
& =\bar{\psi}(t,-\bar{x}) \gamma^{\mu} A_{\mu} \psi(t,-\vec{x}) \\
& \text { Where we used: } \bar{\psi} \gamma^{\mu} \psi \xrightarrow{p}\left\{\begin{array}{cl}
\bar{\psi} \gamma^{\mu} \psi(t,-\vec{x}) & \text { for } \mu=0 \\
-\bar{\psi} \gamma^{\mu} \psi(t,-\vec{x}) & \text { else }
\end{array}\right. \\
& \text { \& } \quad A^{\mu}(t, \vec{x}) \xrightarrow{P} \begin{cases}A^{\mu}(t,-\vec{x}) & \text { for } \mu=0 \\
A^{\mu}(t,-\vec{x}) & \text { for } \mu=i \in\{1,2,3\}\end{cases}
\end{aligned}
$$

c) Show that the helicity of a dirac fermion changes sign under space reflection, but not under time reversal.
Hint: remember the helicity operator is defined as $\hat{\Lambda}=\frac{\overrightarrow{\hat{\Sigma}} \cdot \vec{p}}{|\vec{p}|}$ with $\overrightarrow{\hat{\Sigma}}=\frac{1}{2}\left(\begin{array}{cc}\sigma^{i} & \\ & \sigma^{i}\end{array}\right)$ the spin operator. To check the behavior under time reversal, adopt explicit expressions for the $u(p)$ spinor and restrict to the case $p_{x}=0=p_{y}$.

We know $\vec{p} \xrightarrow{p}-\vec{p}$ but $\underset{\hat{\Sigma}}{\vec{i}} \xrightarrow{p} \widehat{\vec{\Sigma}} \Rightarrow \hat{\Lambda}=\frac{\vec{\Sigma} \cdot \vec{p}}{|\vec{p}|} \xrightarrow{p} \frac{\hat{\Sigma} \cdot(-\vec{p})}{|\vec{p}|}=-\hat{\Lambda}$ Similarly $\vec{p} \xrightarrow{\tau}-\vec{p}$ and $\widehat{\Sigma} \xrightarrow{\tau}-\vec{\Sigma} \Rightarrow \hat{\Omega} \xrightarrow{T} \hat{\Lambda}$
Now, to see the transformation change of $\widehat{\Sigma}$ under $P<I$ resp. Consider egg. $\Sigma^{(3)}$

$$
\Sigma^{(3)}=\left(\frac{1}{2} \frac{u_{s=\frac{1}{2}}(p) \overline{u_{s=\frac{1}{2}}(p)}}{2 m}-\frac{1}{2} \frac{u_{s-\frac{1}{2}}(p) \overline{u_{s-2}(p)}}{2 m}\right) \delta(p-n)
$$

We can consider $\vec{p}=\vec{e}_{n}$ then $U_{s}(p)=\left(\begin{array}{ll}\sqrt{p_{0}+m} & x_{s} \\ \sqrt{p_{0}-m} & \sigma_{3} x_{s}\end{array}\right)$

$$
\text { and } \quad u_{s}(p) \xrightarrow{p} u_{s}(p) \quad ; \quad \overline{u_{s}(p)} \xrightarrow{q} \overline{u_{s}(p)}
$$

Since $p^{\prime} \xrightarrow{p} p^{\prime}$, as a consequence $\tilde{\Sigma}^{(8)} \stackrel{\varphi}{\mapsto} \widehat{\Sigma}$ because of \circledast
In a similar manner because $p_{0} \xrightarrow{\tau}-p_{0}$
We find $u_{s}(p) \xrightarrow{T}\left(\begin{array}{cc}0 & i \sigma^{3} \\ i \sigma^{2} & 0\end{array}\right) u_{s}(p) \quad ; \quad \overline{u_{s}(p)} \xrightarrow{T} u_{s}(p)\left(\begin{array}{cc}0 & i \sigma^{3} \\ i \sigma^{3} & 0\end{array}\right) \quad$ \& in combo with

$$
\rightarrow \hat{\Sigma}^{(3)} \longrightarrow \longrightarrow\left(\begin{array}{cc}
0 & i \sigma^{2} \\
i \sigma^{3} & 0
\end{array}\right) \hat{\Sigma}^{(3)}\left(\begin{array}{cc}
0 & i \sigma^{3} \\
i \sigma^{3} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & i \sigma^{3} \\
i \sigma^{2} & 0
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
\sigma^{3} & 0 \\
0 & \sigma^{3}
\end{array}\right)\left(\begin{array}{cc}
0 & i \sigma^{3} \\
i \sigma^{2} & 0
\end{array}\right)
$$

Analogously we can show $\widehat{\vec{\Sigma}} \xrightarrow{\tau}-\widehat{\bar{\Sigma}}=-\frac{1}{2}\left(\begin{array}{cc}3^{3} & 0 \\ 0 & \sigma^{2}\end{array}\right)=-\hat{\Sigma}^{(3)}$

