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Mandelstam variables in center-of-mass (CM) frame

Problem Statement

It can be derived from first principles (or motivated with much less-
rigorous arguments as in Schwartz chapter 5.3) that for a process like

efe” =y (1)
the cross section has a form,

do et

Q) 6472EL,

(14 cos?6) (2)

in the COM frame.

(a). Work out the Lorentz-invariant quantities s = (pes + po-)?, t =
(py- — pe-)*and u = (p,+ — p,-)* in terms of Ecy and cos 6, while
assuming m, = m, = 0.

(b). Derive a relationship between s,t and u.
(0). Rewr1te G in terms of s, t and u.

(d). Now assume m,, and m, are non-zero. Derive a relationship be-
tween s, t and u and the masses.

Solution.

Before even starting solving the individual questions, a good idea would be
to have all the diagrams (for all the 3 channels) in front of us. Also it is
important that we label everything properly.

Let,

(Pe)u= (P (Pet)u= (P2 (P )u = (P3)ur  (Put)u = (Pa)y  (3)

be our 4 vectors. (All the other quantities get the same labels for these
particles)

Let us assume that the collision is happening on the (our-chosen) x-axis
and the products are in the xy-plane (In the COM frame, we can choose this
wlog). 0 is the angle at which the products back-scatter. This gives us,

(p1)u = (E1, 1) = (Ev, |P1],0,0)

(p2)u = (E2, P2) = (E2,|P2/,0,0) @
(p3)u = (Es, P3) = (Es, P3| cos b, |p3|sin6,0)

(pa)u = (Es, Ps) = (Es, — |Pa| cos 0, — |ps| sin6,0)
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In the CM reference frame,
|72 (5)
Ps = —pPs = |P3| =[P4 (6)

To even simplify further the notation, let |f1| = p and |p3| = k. This
gives us,

p = |p| = [P2] (7)
k= [ps| = |Pa (8)

We define the CM energy by Ecy using the following
E1‘|‘E2:E3+E4:ECM (9)

Where Ecy is the center-of-mass frame. The energies are given by,

Ey=/md + [pu* "5 || = p
By =\/md+ |7l " |l = p )
Es = /m} + |5l " sl =k
Es=/m3+ |l " |fal = k

From this Ecy can be written as,

Ecm = 2k = 2p (11)
— k=p= ECTM (12)

which helps us write down the all of our 4 vectors using just one variable
Ecwm (at least for the zero particle masses scenario) by plugging in eq.(10),
eq.(12) in eq.(61),

g
(P = (p.p,0,0) = =—%(1,1,0,0)

E
(P2 = (p.=p,0,0) = (1, ~1,0,0)
Ecum (13)
(p3)u = (k,kcosb,ksin6,0) = T(l,cos 6,sin6,0)

(pa)u = (k, —kcos 6, —ksin @) = ECTM(L —cosf, —sinh,0)
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Solution (a).

Now that we have set up all the variables in terms of Ecy, cosf, we can
calculate s,t,u as a function of those variables (as asked in the question)
quite easily.

Starting with s,

s= (0t (1) = (91010, + 51 -1,00)) )

- (ECTM(z, 0, 0,0)) (15)
= Fave (4 ) (16)
= E2y (17)

[ s = Etum ] (18)

Now, similarly we calculate ¢,

2
= ((p2) = () = (“540,1,0,0) - X (1cost,sin6,0)) (19

2 2
£ 2
= (%(O, 1 —cosf,—sin®, 0)) (20)
EZ
— %(02 — (1 —cosf)* — (—sinh)* —0) (21)
2
= EZM( 1+2cos® — cos? 0 — sin® 6) (22)
T
2
— %(—Z—FZCOSH) (23)
EZ
- %(—1+C089) (24)
EZ
= —%(1 — cos0) (25)

where we did the last step of rearrangement because we are used to seeing
cross-sections in terms of (1 + cos6).

B

5 (1 —cos@) (26)
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Finally, for u,

2
= (p2)y = (pa),)? = (53(1,1,0,0) = 2401, ~cost,—sin,0) ) @7)

2
. 2
— (%(O, 1+ cos 6, sin 9,0)) (28)
E2
= %(02 — (14 cos8)? — (sin)* — 0) (29)
EZ
= %(—1—2(:059\— cos? f — sin® 0) (30)
-1
EZ
= %(—2 — 2cos6) (31)
EZ
— %(—1 — cos ) (32)
2
u= —ECTM(l + cos 0) (33)

Solution (b).

A common relation between s, t, u can be derived by adding them,

EZ EZ
s—l—t—l—u:E%M—%(l—cos@—%(l—l—cose) (34)
EZ E2 E2
= E&\; — (2:M — ;M + EZ:M (cos® — cos ) (35)
—0 (36)
s+t4+u=0 (37)

Solution (c).

We want to rewrite the given cross section in the question in terms of the
Madelstam variables.

do et

= 1 20
0 647T2E(2:M( + cos” 0) (38)

From what we have found, we can use,
Etm = s (39)
4
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2(t2 + u?) (40)

(14 cos®0) = 2

The second equation we find by a quick mathematica computation as seen

in fig.(1)
¢ lhaveused Ecy?=s and cos 0=y
In[31]:= Reduce = j (1-y), u-== j (L+y),s+t+u=0;,Vy
2 2
-t+u
out[31]= [s = -t -u&&t+u + 0&&Yy == . [] (Uu==08&&t ==08&&s == 0)
+ U
¢ This gives: cosf = e
-t+u
In[41]:=y =
t+u
-t+u
out[41]=
t+u

Inf46:= 1 + y* 7/ Simplify

2 (€% +u?)

Out[46]= 3
(t+u)

2(t2+u2)
2

* Using (t +u) = s, we have the following relation: (1 + Cos” 6) =
S

Figure 1: A quick mathematica computation to find the relation between
cos 0 and s, t, u. The equation holds true as long as u +t # 0, i.e. Ecm # 0,

which is something we can safely assume.

The rearranged cross section is,

do et .,
a0 3271253(t +1) 1)

Solution (d).

Here, we just want to find s,t and u for the case where we reintroduce the

masses

Me- = Mo+ = M1, My = My+ = My (42)



QFT solutions - rohankulkarni.me

Actually, let us just work where all the masses are different, m;, m;, m3 and
my. Just like last time, we add the three Mandelstam variables,

s+t+u= ((p)u+ (p2)p)° + ((P0)x — (3))* + ((p1)n — (pa)i)® (43)

Just for this calculation’s sake, I am skipping the 4-vector indices, so (p1), =

p1- That means pi = (p1),(p1)" and p1 - p2 = (p1)u(p2)"
Calculating the individual squared terms,

- 2 —
pt = (mi+|p| - |pi]) =mi
2
= ... =m
E : (4
p3:... :m3
pi=-. = mj

Again expanding the sum of the three Mandelstam variables,

Stttu=pitp+2ppatpitps— 20t pit =20 ps (45)
=3pi -+t pitpit2p (p2—ps—pa) (46)

Recall that energy conservation plus momentum conservation is both built
into conservation of 4-momentum (The zeroth component takes care of the

energy and the i'th components takes care of momentum conservation). So
we can use,

p1+ P2 = p3+ pa
p1= —p2+p3+ps (47)
—P1= P2 —P3— P4

The last equation here can be plugged into the last term of the previous
equation giving us,

s+t+u=3pi+ps+ps+pi—2p1-p (48)
=pi+p+pitr (49)
= i+ mj + m3 + mj (50)

This gives us such an immensely important result used frequently in
particle physics,

S+ t4u=m:+mi+ms+m; (51)
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Let us see how do the 4-vectors look in the massive case,

Me- = Mp+ = My, M- = My+ = My (52)

We will now use eq.(10),

Ey = \/m}+ |p|* = \/m3 +
>+ [Pl 1+ p 53)
Ey = \/m} + |pa|" = \/m} + K2
Es = \/m} + |pa|" = /m} + K2
Now we write Ecy,

Ecm=E + E; (54)
= 24/m3 4 p? (55)

Ecv = Es + Ey4 (56)
=2/m2 + K2 (57)

E

M Jmdtp = fm 4R (58)
—E == =E, (59)

The first component of all 4 vectors will remain the same, but we won’t

be able to pull out the ECTM factor outside the 4-vectors as we did in the
massless case. This is the furthest simplification we can make in the
mi = My, M3 = M4 Massive case,

. (E
(po = (B 1) = (224, ,0,0)
. E
(p2)e = (B 72) = (224, p,0,0)
E (60)
(Ps)y = (E3, p3) = (%,kcos 0,ksing, 0)

(P4)y = (E4, Ps) = (ECTM, —kcos9, —ksin@,O)

If all the 4 masses are different m; # m, # mz # my (all non-zero), then
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the following is the most simplification we can achieve,

(p1)u = (Ev, 1) = (Ev, |P1],0,0) = (E1, p,0,0)
(P2)u = (E2, P2) = (E2,|P2[,0,0) = (E2, p,0,0)
(p3)u = (Es, P3) = (Es, |P3| cos b, |ps|sinB,0) = (E3, pcosB, psinb,0)
(Pa)u = (Es, Pa) = (Es, — |Pa| cos 6, — | p4| sin 6, 0)
(E4, —kcosB, —ksin6,0)

(61)

If some of the masses are zero, you can start from here and might be
able to represent again in terms of Ecy.




