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Mandelstam variables in center-of-mass (CM) frame

Problem Statement

It can be derived from first principles (or motivated with much less-
rigorous arguments as in Schwartz chapter 5.3) that for a process like

e+e− → µ+µ− (1)

the cross section has a form,

dσ

dΩ
=

e4

64π2E2
CM

(1 + cos2 θ) (2)

in the COM frame.

(a). Work out the Lorentz-invariant quantities s = (pe+ + pe−)
2, t =

(pµ− − pe−)
2 and u = (pµ+ − pe−)

2 in terms of ECM and cos θ, while
assuming mµ = me = 0.

(b). Derive a relationship between s, t and u.

(c). Rewrite dσ
dΩ in terms of s, t and u.

(d). Now assume mµ and me are non-zero. Derive a relationship be-
tween s, t and u and the masses.

Solution.

Before even starting solving the individual questions, a good idea would be
to have all the diagrams (for all the 3 channels) in front of us. Also it is
important that we label everything properly.

Let,

(pe−)µ = (p1)µ, (pe+)µ = (p2)µ, (pµ−)µ = (p3)µ, (pµ+)µ = (p4)µ (3)

be our 4 vectors. (All the other quantities get the same labels for these
particles)

Let us assume that the collision is happening on the (our-chosen) x-axis
and the products are in the xy-plane (In the COM frame, we can choose this
wlog). θ is the angle at which the products back-scatter. This gives us,

(p1)µ = (E1, p⃗1) = (E1, | p⃗1| , 0, 0)
(p2)µ = (E2, p⃗2) = (E2, | p⃗2| , 0, 0)
(p3)µ = (E3, p⃗3) = (E3, | p⃗3| cos θ, |p3| sin θ, 0)
(p4)µ = (E4, p⃗4) = (E4,− | p⃗4| cos θ,− |p4| sin θ, 0)

(4)

1



QFT solutions - rohankulkarni.me

In the CM reference frame,

p⃗1 = − p⃗2 =⇒ | p⃗1| = | p⃗2| (5)
p⃗3 = − p⃗4 =⇒ | p⃗3| = | p⃗4| (6)

To even simplify further the notation, let | p⃗1| = p and | p⃗3| = k. This
gives us,

p ≡ | p⃗1| = | p⃗2| (7)
k ≡ | p⃗3| = | p⃗4| (8)

We define the CM energy by ECM using the following

E1 + E2 = E3 + E4 = ECM (9)

Where ECM is the center-of-mass frame. The energies are given by,

E1 =
√

m2
1 + | p⃗1|2

m1=0
= | p⃗1| = p

E2 =
√

m2
2 + | p⃗2|2

m2=0
= | p⃗2| = p

E3 =
√

m2
3 + | p⃗3|2

m3=0
= | p⃗3| = k

E4 =
√

m2
4 + | p⃗4|2

m4=0
= | p⃗4| = k

(10)

From this ECM can be written as,

ECM = 2k = 2p (11)

=⇒ k = p =
ECM

2
(12)

which helps us write down the all of our 4 vectors using just one variable
ECM (at least for the zero particle masses scenario) by plugging in eq.(10),
eq.(12) in eq.(61),

(p1)µ = (p, p, 0, 0) =
ECM

2
(1, 1, 0, 0)

(p2)µ = (p,−p, 0, 0) =
ECM

2
(1,−1, 0, 0)

(p3)µ = (k, k cos θ, k sin θ, 0) =
ECM

2
(1, cos θ, sin θ, 0)

(p4)µ = (k,−k cos θ,−k sin θ) =
ECM

2
(1,− cos θ,− sin θ, 0)

(13)
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Solution (a).

Now that we have set up all the variables in terms of ECM, cos θ, we can
calculate s, t, u as a function of those variables (as asked in the question)
quite easily.

Starting with s,

s =
(
(p1)µ + (p2)µ

)2
=

(
ECM

2
(1, 1, 0, 0) +

ECM

2
(1,−1, 0, 0)

)2

(14)

=

(
ECM

2
(2, 0, 0, 0)

)2

(15)

=
ECM2

4
(4 − 0) (16)

= E2
CM (17)

s = E2
CM (18)

Now, similarly we calculate t,

t = ((p1)µ − (p3)µ)
2 =

(
ECM

2
(1, 1, 0, 0)− ECM

2
(1, cos θ, sin θ, 0)

)2

(19)

=

(
ECM

2
(0, 1 − cos θ,− sin θ, 0)

)2

(20)

=
E2

CM

4
(02 − (1 − cos θ)2 − (− sin θ)2 − 0) (21)

=
E2

CM

4
(−1 + 2 cos θ − cos2 θ − sin2 θ︸ ︷︷ ︸

−1

) (22)

=
E2

CM

4
(−2 + 2 cos θ) (23)

=
E2

CM

2
(−1 + cos θ) (24)

= −E2
CM

2
(1 − cos θ) (25)

where we did the last step of rearrangement because we are used to seeing
cross-sections in terms of (1 ± cos θ).

t = −E2
CM

2
(1 − cos θ) (26)
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Finally, for u,

u = ((p1)µ − (p4)µ)
2 =

(
ECM

2
(1, 1, 0, 0)− ECM

2
(1,− cos θ,− sin θ, 0)

)2

(27)

=

(
ECM

2
(0, 1 + cos θ, sin θ, 0)

)2

(28)

=
E2

CM

4
(02 − (1 + cos θ)2 − (sin θ)2 − 0) (29)

=
E2

CM

4
(−1 − 2 cos θ − cos2 θ − sin2 θ︸ ︷︷ ︸

−1

) (30)

=
E2

CM

4
(−2 − 2 cos θ) (31)

=
E2

CM

2
(−1 − cos θ) (32)

u = −E2
CM

2
(1 + cos θ) (33)

Solution (b).

A common relation between s, t, u can be derived by adding them,

s + t + u = E2
CM − E2

CM

2
(1 − cos θ)− E2

CM

2
(1 + cos θ) (34)

= E2
CM − E2

CM

2
− E2

CM

2
+

E2
CM

2
(cos θ − cos θ) (35)

= 0 (36)

s + t + u = 0 (37)

Solution (c).

We want to rewrite the given cross section in the question in terms of the
Madelstam variables.

dσ

dΩ
=

e4

64π2E2
CM

(1 + cos2 θ) (38)

From what we have found, we can use,

E2
CM = s (39)
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(1 + cos2 θ) =
2(t2 + u2)

s2 (40)

The second equation we find by a quick mathematica computation as seen
in fig.(1)

Figure 1: A quick mathematica computation to find the relation between
cos θ and s, t, u. The equation holds true as long as u + t ̸= 0, i.e. ECM ̸= 0,
which is something we can safely assume.

The rearranged cross section is,

dσ

dΩ
=

e4

32π2s3 (t
2 + u2) (41)

Solution (d).

Here, we just want to find s, t and u for the case where we reintroduce the
masses

me− = me+ = m1, mµ− = mµ+ = m2 (42)
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Actually, let us just work where all the masses are different, m1, m2, m3 and
m4. Just like last time, we add the three Mandelstam variables,

s + t + u =
(
(p1)µ + (p2)µ

)2
+

(
(p1)µ − (p3)µ

)2
+

(
(p1)µ − (p4)µ

)2 (43)

Just for this calculation’s sake, I am skipping the 4-vector indices, so (p1)µ ≡
p1. That means p2

1 = (p1)µ(p1)µ and p1 · p2 = (p1)µ(p2)µ

Calculating the individual squared terms,

p2
1 = (m2

1 + | p⃗1|2 −
∣∣ p⃗2

1

∣∣) = m2
1

p2
2 = . . . = m2

2

p2
3 = . . . = m2

3

p2
4 = . . . = m2

4

(44)

Again expanding the sum of the three Mandelstam variables,

s + t + u = p2
1 + p2

2 + 2p1 · p2 + p2
1 + p2

3 − 2p1 · p3 + p2
1 + p2

4 − 2p1 · p4 (45)
= 3p2

1 + p2
2 + p2

3 + p2
4 + 2p1 · (p2 − p3 − p4) (46)

Recall that energy conservation plus momentum conservation is both built
into conservation of 4-momentum (The zeroth component takes care of the
energy and the i’th components takes care of momentum conservation). So
we can use,

p1 + p2 = p3 + p4

p1 = −p2 + p3 + p4

−p1 = p2 − p3 − p4

(47)

The last equation here can be plugged into the last term of the previous
equation giving us,

s + t + u = 3p2
1 + p2

2 + p2
3 + p2

4 − 2p1 · p1 (48)
= p2

1 + p2
2 + p2

3 + p2
4 (49)

= m2
1 + m2

2 + m2
3 + m2

4 (50)

This gives us such an immensely important result used frequently in
particle physics,

s + t + u = m2
1 + m2

2 + m2
3 + m2

4 (51)
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Comment

Let us see how do the 4-vectors look in the massive case,

me− = me+ = m1, mµ− = mµ+ = m2 (52)

We will now use eq.(10),

E1 =
√

m2
1 + | p⃗1|2 =

√
m2

1 + p2

E2 =
√

m2
2 + | p⃗1|2 =

√
m2

1 + p2

E3 =
√

m2
3 + | p⃗2|2 =

√
m2

2 + k2

E4 =
√

m2
4 + | p⃗2|2 =

√
m2

2 + k2

(53)

Now we write ECM,

ECM = E1 + E2 (54)

= 2
√

m2
1 + p2 (55)

ECM = E3 + E4 (56)

= 2
√

m2
2 + k2 (57)

ECM

2
=

√
m2

1 + p2 =
√

m2
2 + k2 (58)

= E1 = E2 = E3 = E4 (59)

The first component of all 4 vectors will remain the same, but we won’t
be able to pull out the ECM

2 factor outside the 4-vectors as we did in the
massless case. This is the furthest simplification we can make in the
m1 = m2, m3 = m4 massive case,

(p1)µ = (E1, p⃗1) =

(
ECM

2
, p, 0, 0

)
(p2)µ = (E2, p⃗2) =

(
ECM

2
, p, 0, 0

)
(p3)µ = (E3, p⃗3) =

(
ECM

2
, k cos θ, k sin θ, 0

)
(p4)µ = (E4, p⃗4) =

(
ECM

2
,−k cos θ,−k sin θ, 0

)
(60)

If all the 4 masses are different m1 ̸= m2 ̸= m3 ̸= m4 (all non-zero), then
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the following is the most simplification we can achieve,

(p1)µ = (E1, p⃗1) = (E1, | p⃗1| , 0, 0) = (E1, p, 0, 0)
(p2)µ = (E2, p⃗2) = (E2, | p⃗2| , 0, 0) = (E2, p, 0, 0)
(p3)µ = (E3, p⃗3) = (E3, | p⃗3| cos θ, |p3| sin θ, 0) = (E3, p cos θ, p sin θ, 0)
(p4)µ = (E4, p⃗4) = (E4,− | p⃗4| cos θ,− |p4| sin θ, 0)

= (E4,−k cos θ,−k sin θ, 0)
(61)

If some of the masses are zero, you can start from here and might be
able to represent again in terms of ECM.
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