Mandelstam variables in center-of-mass (CM) frame

Problem Statement

It can be derived from first principles (or motivated with much lessrigorous arguments as in Schwartz chapter 5.3) that for a process like

$$
\begin{equation*}
e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \tag{1}
\end{equation*}
$$

the cross section has a form,

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{64 \pi^{2} E_{\mathrm{CM}}^{2}}\left(1+\cos ^{2} \theta\right) \tag{2}
\end{equation*}
$$

in the COM frame.
(a). Work out the Lorentz-invariant quantities $s=\left(p_{e+}+p_{e^{-}}\right)^{2}, t=$ $\left(p_{\mu^{-}}-p_{e^{-}}\right)^{2}$ and $u=\left(p_{\mu^{+}}-p_{e^{-}}\right)^{2}$ in terms of E_{CM} and $\cos \theta$, while assuming $m_{\mu}=m_{e}=0$.
(b). Derive a relationship between s, t and u.
(c). Rewrite $\frac{d \sigma}{d \Omega}$ in terms of s, t and u.
(d). Now assume m_{μ} and m_{e} are non-zero. Derive a relationship between s, t and u and the masses.

Solution.

Before even starting solving the individual questions, a good idea would be to have all the diagrams (for all the 3 channels) in front of us. Also it is important that we label everything properly.

Let,

$$
\begin{equation*}
\left(p_{e^{-}}\right)_{\mu}=\left(p_{1}\right)_{\mu,} \quad\left(p_{e^{+}}\right)_{\mu}=\left(p_{2}\right)_{\mu,} \quad\left(p_{\mu^{-}}\right)_{\mu}=\left(p_{3}\right)_{\mu,} \quad\left(p_{\mu^{+}}\right)_{\mu}=\left(p_{4}\right)_{\mu} \tag{3}
\end{equation*}
$$

be our 4 vectors. (All the other quantities get the same labels for these particles)

Let us assume that the collision is happening on the (our-chosen) x-axis and the products are in the $x y$-plane (In the COM frame, we can choose this wlog). θ is the angle at which the products back-scatter. This gives us,

$$
\begin{align*}
\left(p_{1}\right)_{\mu} & =\left(E_{1}, \vec{p}_{1}\right)=\left(E_{1},\left|\vec{p}_{1}\right|, 0,0\right) \\
\left(p_{2}\right)_{\mu} & =\left(E_{2}, \vec{p}_{2}\right)=\left(E_{2}, \vec{p}_{2} \mid, 0,0\right) \tag{4}\\
\left(p_{3}\right)_{\mu} & =\left(E_{3}, \vec{p}_{3}\right)=\left(E_{3},\left|\vec{p}_{3}\right| \cos \theta,\left|p_{3}\right| \sin \theta, 0\right) \\
\left(p_{4}\right)_{\mu} & =\left(E_{4}, \vec{p}_{4}\right)=\left(E_{4},-\left|\vec{p}_{4}\right| \cos \theta,-\left|p_{4}\right| \sin \theta, 0\right)
\end{align*}
$$

In the CM reference frame,

$$
\begin{align*}
& \vec{p}_{1}=-\vec{p}_{2} \Longrightarrow\left|\vec{p}_{1}\right|=\left|\vec{p}_{2}\right| \tag{5}\\
& \vec{p}_{3}=-\vec{p}_{4} \Longrightarrow\left|\vec{p}_{3}\right|=\left|\vec{p}_{4}\right| \tag{6}
\end{align*}
$$

To even simplify further the notation, let $\left|\vec{p}_{1}\right|=p$ and $\left|\vec{p}_{3}\right|=k$. This gives us,

$$
\begin{align*}
& p \equiv\left|\vec{p}_{1}\right|=\left|\vec{p}_{2}\right| \tag{7}\\
& k \equiv\left|\vec{p}_{3}\right|=\left|\vec{p}_{4}\right| \tag{8}
\end{align*}
$$

We define the CM energy by E_{CM} using the following

$$
\begin{equation*}
E_{1}+E_{2}=E_{3}+E_{4}=E_{\mathrm{CM}} \tag{9}
\end{equation*}
$$

Where E_{CM} is the center-of-mass frame. The energies are given by,

$$
\begin{align*}
& E_{1}=\sqrt{m_{1}^{2}+\left|\vec{p}_{1}\right|^{2}} \stackrel{\stackrel{m_{1}=0}{=}}{=}\left|\vec{p}_{1}\right|=p \\
& E_{2}=\sqrt{m_{2}^{2}+\left|\vec{p}_{2}\right|^{2}} \stackrel{m_{2}=0}{=}\left|\vec{p}_{2}\right|=p \tag{10}\\
& E_{3}=\sqrt{m_{3}^{2}+\left|\vec{p}_{3}\right|^{2}} \stackrel{m_{3}=0}{=}\left|\vec{p}_{3}\right|=k \\
& E_{4}=\sqrt{m_{4}^{2}+\left|\vec{p}_{4}\right|^{2}} \stackrel{m_{4}=0}{=}\left|\vec{p}_{4}\right|=k
\end{align*}
$$

From this E_{CM} can be written as,

$$
\begin{align*}
E_{\mathrm{CM}} & =2 k=2 p \tag{11}\\
\Longrightarrow k & =p=\frac{E_{\mathrm{CM}}}{2} \tag{12}
\end{align*}
$$

which helps us write down the all of our 4 vectors using just one variable E_{CM} (at least for the zero particle masses scenario) by plugging in eq.(10), eq.(12) in eq.(61),

$$
\begin{align*}
& \left(p_{1}\right)_{\mu}=(p, p, 0,0)=\frac{E_{\mathrm{CM}}}{2}(1,1,0,0) \\
& \left(p_{2}\right)_{\mu}=(p,-p, 0,0)=\frac{E_{\mathrm{CM}}}{2}(1,-1,0,0) \tag{13}\\
& \left(p_{3}\right)_{\mu}=(k, k \cos \theta, k \sin \theta, 0)=\frac{E_{\mathrm{CM}}}{2}(1, \cos \theta, \sin \theta, 0) \\
& \left(p_{4}\right)_{\mu}=(k,-k \cos \theta,-k \sin \theta)=\frac{E_{\mathrm{CM}}}{2}(1,-\cos \theta,-\sin \theta, 0)
\end{align*}
$$

Solution (a).

Now that we have set up all the variables in terms of $E_{\mathrm{CM}}, \cos \theta$, we can calculate s, t, u as a function of those variables (as asked in the question) quite easily.

Starting with s,

$$
\begin{align*}
s=\left(\left(p_{1}\right)_{\mu}+\left(p_{2}\right)_{\mu}\right)^{2}= & \left(\frac{E_{\mathrm{CM}}}{2}(1,1,0,0)+\frac{E_{\mathrm{CM}}}{2}(1,-1,0,0)\right)^{2} \tag{14}\\
= & \left(\frac{E_{\mathrm{CM}}}{2}(2,0,0,0)\right)^{2} \tag{15}\\
= & \frac{E_{\mathrm{CM}^{2}}}{4}(4-0) \tag{16}\\
= & E_{\mathrm{CM}}^{2} \tag{17}\\
& s=E_{\mathrm{CM}}^{2} \tag{18}
\end{align*}
$$

Now, similarly we calculate t,

$$
\begin{align*}
t=\left(\left(p_{1}\right)_{\mu}-\left(p_{3}\right)_{\mu}\right)^{2} & =\left(\frac{E_{\mathrm{CM}}}{2}(1,1,0,0)-\frac{E_{\mathrm{CM}}}{2}(1, \cos \theta, \sin \theta, 0)\right)^{2} \tag{19}\\
& =\left(\frac{E_{\mathrm{CM}}}{2}(0,1-\cos \theta,-\sin \theta, 0)\right)^{2} \tag{20}\\
& =\frac{E_{\mathrm{CM}}^{2}}{4}\left(0^{2}-(1-\cos \theta)^{2}-(-\sin \theta)^{2}-0\right) \tag{21}\\
& =\frac{E_{\mathrm{CM}}^{2}}{4}(-1+2 \cos \theta \underbrace{-\cos ^{2} \theta-\sin ^{2} \theta}_{-1}) \tag{22}\\
& =\frac{E_{\mathrm{CM}}^{2}}{4}(-2+2 \cos \theta) \tag{23}\\
& =\frac{E_{\mathrm{CM}}^{2}}{2}(-1+\cos \theta) \tag{24}\\
& =-\frac{E_{\mathrm{CM}}^{2}}{2}(1-\cos \theta) \tag{25}
\end{align*}
$$

where we did the last step of rearrangement because we are used to seeing cross-sections in terms of $(1 \pm \cos \theta)$.

$$
\begin{equation*}
t=-\frac{E_{\mathrm{CM}}^{2}}{2}(1-\cos \theta) \tag{26}
\end{equation*}
$$

Finally, for u,

$$
\begin{align*}
u=\left(\left(p_{1}\right)_{\mu}-\left(p_{4}\right)_{\mu}\right)^{2} & =\left(\frac{E_{\mathrm{CM}}}{2}(1,1,0,0)-\frac{E_{\mathrm{CM}}}{2}(1,-\cos \theta,-\sin \theta, 0)\right)^{2} \tag{27}\\
& =\left(\frac{E_{\mathrm{CM}}}{2}(0,1+\cos \theta, \sin \theta, 0)\right)^{2} \tag{28}\\
& =\frac{E_{\mathrm{CM}}^{2}}{4}\left(0^{2}-(1+\cos \theta)^{2}-(\sin \theta)^{2}-0\right) \tag{29}\\
& =\frac{E_{\mathrm{CM}}^{2}}{4}(-1-2 \cos \theta \underbrace{-\cos ^{2} \theta-\sin ^{2} \theta}_{-1}) \tag{30}\\
& =\frac{E_{\mathrm{CM}}^{2}}{4}(-2-2 \cos \theta) \tag{31}\\
& =\frac{E_{\mathrm{CM}}^{2}}{2}(-1-\cos \theta) \tag{32}\\
& u=-\frac{E_{\mathrm{CM}}^{2}}{2}(1+\cos \theta) \tag{33}
\end{align*}
$$

Solution (b).

A common relation between s, t, u can be derived by adding them,

$$
\begin{align*}
s+t+u= & E_{\mathrm{CM}}^{2}-\frac{E_{\mathrm{CM}}^{2}}{2}(1-\cos \theta)-\frac{E_{\mathrm{CM}}^{2}}{2}(1+\cos \theta) \tag{34}\\
& =E_{\mathrm{CM}}^{2}-\frac{E_{\mathrm{CM}}^{2}}{2}-\frac{E_{\mathrm{CM}}^{2}}{2}+\frac{E_{\mathrm{CM}}^{2}}{2}(\cos \theta-\cos \theta) \tag{35}\\
& =0 \tag{36}\\
& s+t+u=0 \tag{37}
\end{align*}
$$

Solution (c).

We want to rewrite the given cross section in the question in terms of the Madelstam variables.

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{64 \pi^{2} E_{\mathrm{CM}}^{2}}\left(1+\cos ^{2} \theta\right) \tag{38}
\end{equation*}
$$

From what we have found, we can use,

$$
\begin{equation*}
E_{\mathrm{CM}}^{2}=s \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\left(1+\cos ^{2} \theta\right)=\frac{2\left(t^{2}+u^{2}\right)}{s^{2}} \tag{40}
\end{equation*}
$$

The second equation we find by a quick mathematica computation as seen in fig.(1)
\varnothing I have used $E_{\mathrm{CM}}{ }^{2}=s$ and $\cos \theta=y$
$\ln [31]:=$ Reduce $\left[\left\{t==\frac{-s}{2}(1-y), u=\frac{-s}{2}(1+y), s+t+u==0\right\}, y\right]$
Out[31] $=\left(s=-t-u \& \& t+u \neq 0 \& \& y==\frac{-t+u}{t+u}\right)| |(u=0 \& \& t==0 \& \& s==0)$
$\%$ This gives: $\cos \theta=\frac{-t+u}{t+u}$

$$
\ln [41]: \left.=y=\frac{-t+u}{t+u} \right\rvert\,
$$

$$
\text { Out[41] }=\frac{-t+u}{t+u}
$$

$$
\ln [46]:=1+y^{2} / / \text { Simplify }
$$

$$
\text { Out[46]= } \frac{2\left(\mathrm{t}^{2}+\mathrm{u}^{2}\right)}{(\mathrm{t}+\mathrm{u})^{2}}
$$

Using $(t+u)=s$, we have the following relation: $\left(1+\operatorname{Cos}^{2} \theta\right)=\frac{2\left(t^{2}+u^{2}\right)}{s^{2}}$

Figure 1: A quick mathematica computation to find the relation between $\cos \theta$ and s, t, u. The equation holds true as long as $u+t \neq 0$, i.e. $E_{\mathrm{CM}} \neq 0$, which is something we can safely assume.

The rearranged cross section is,

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{32 \pi^{2} s^{3}}\left(t^{2}+u^{2}\right) \tag{41}
\end{equation*}
$$

Solution (d).

Here, we just want to find s, t and u for the case where we reintroduce the masses

$$
\begin{equation*}
m_{e^{-}}=m_{e^{+}}=m_{1}, \quad m_{\mu^{-}}=m_{\mu^{+}}=m_{2} \tag{42}
\end{equation*}
$$

Actually, let us just work where all the masses are different, m_{1}, m_{2}, m_{3} and m_{4}. Just like last time, we add the three Mandelstam variables,

$$
\begin{equation*}
s+t+u=\left(\left(p_{1}\right)_{\mu}+\left(p_{2}\right)_{\mu}\right)^{2}+\left(\left(p_{1}\right)_{\mu}-\left(p_{3}\right)_{\mu}\right)^{2}+\left(\left(p_{1}\right)_{\mu}-\left(p_{4}\right)_{\mu}\right)^{2} \tag{43}
\end{equation*}
$$

Just for this calculation's sake, I am skipping the 4 -vector indices, so $\left(p_{1}\right)_{\mu} \equiv$ p_{1}. That means $p_{1}^{2}=\left(p_{1}\right)_{\mu}\left(p_{1}\right)^{\mu}$ and $p_{1} \cdot p_{2}=\left(p_{1}\right)_{\mu}\left(p_{2}\right)^{\mu}$

Calculating the individual squared terms,

$$
\begin{array}{ll}
p_{1}^{2}=\left(m_{1}^{2}+\left|\vec{p}_{1}\right|^{2}-\left|\vec{p}_{1}^{2}\right|\right) & =m_{1}^{2} \\
p_{2}^{2}=\ldots & =m_{2}^{2} \\
p_{3}^{2}=\ldots & =m_{3}^{2} \tag{44}\\
p_{4}^{2}=\ldots & =m_{4}^{2}
\end{array}
$$

Again expanding the sum of the three Mandelstam variables,

$$
\begin{align*}
s+t+u & =p_{1}^{2}+p_{2}^{2}+2 p_{1} \cdot p_{2}+p_{1}^{2}+p_{3}^{2}-2 p_{1} \cdot p_{3}+p_{1}^{2}+p_{4}^{2}-2 p_{1} \cdot p_{4} \tag{45}\\
& =3 p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}+2 p_{1} \cdot\left(p_{2}-p_{3}-p_{4}\right) \tag{46}
\end{align*}
$$

Recall that energy conservation plus momentum conservation is both built into conservation of 4-momentum (The zeroth component takes care of the energy and the i'th components takes care of momentum conservation). So we can use,

$$
\begin{align*}
p_{1}+p_{2} & =p_{3}+p_{4} \\
p_{1} & =-p_{2}+p_{3}+p_{4} \tag{47}\\
-p_{1} & =p_{2}-p_{3}-p_{4}
\end{align*}
$$

The last equation here can be plugged into the last term of the previous equation giving us,

$$
\begin{align*}
s+t+u & =3 p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}-2 p_{1} \cdot p_{1} \tag{48}\\
& =p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2} \tag{49}\\
& =m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2} \tag{50}
\end{align*}
$$

This gives us such an immensely important result used frequently in particle physics,

$$
\begin{equation*}
s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2} \tag{51}
\end{equation*}
$$

Comment

Let us see how do the 4 -vectors look in the massive case,

$$
\begin{equation*}
m_{e^{-}}=m_{e^{+}}=m_{1}, \quad m_{\mu^{-}}=m_{\mu^{+}}=m_{2} \tag{52}
\end{equation*}
$$

We will now use eq.(10),

$$
\begin{align*}
& E_{1}=\sqrt{m_{1}^{2}+\left|\vec{p}_{1}\right|^{2}}=\sqrt{m_{1}^{2}+p^{2}} \\
& E_{2}=\sqrt{m_{2}^{2}+\left|\vec{p}_{1}\right|^{2}}=\sqrt{m_{1}^{2}+p^{2}} \tag{53}\\
& E_{3}=\sqrt{m_{3}^{2}+\left|\vec{p}_{2}\right|^{2}}=\sqrt{m_{2}^{2}+k^{2}} \\
& E_{4}=\sqrt{m_{4}^{2}+\left|\vec{p}_{2}\right|^{2}}=\sqrt{m_{2}^{2}+k^{2}}
\end{align*}
$$

Now we write E_{CM},

$$
\begin{align*}
E_{\mathrm{CM}} & =E_{1}+E_{2} \tag{54}\\
& =2 \sqrt{m_{1}^{2}+p^{2}} \tag{55}\\
E_{\mathrm{CM}} & =E_{3}+E_{4} \tag{56}\\
& =2 \sqrt{m_{2}^{2}+k^{2}} \tag{57}\\
\frac{E_{\mathrm{CM}}}{2} & =\sqrt{m_{1}^{2}+p^{2}}=\sqrt{m_{2}^{2}+k^{2}} \tag{58}\\
& =E_{1}=E_{2}=E_{3}=E_{4} \tag{59}
\end{align*}
$$

The first component of all 4 vectors will remain the same, but we won't be able to pull out the $\frac{E_{\mathrm{CM}}}{2}$ factor outside the 4 -vectors as we did in the massless case. This is the furthest simplification we can make in the $m_{1}=m_{2}, m_{3}=m_{4}$ massive case,

$$
\begin{align*}
& \left(p_{1}\right)_{\mu}=\left(E_{1}, \vec{p}_{1}\right)=\left(\frac{E_{\mathrm{CM}}}{2}, p, 0,0\right) \\
& \left(p_{2}\right)_{\mu}=\left(E_{2}, \vec{p}_{2}\right)=\left(\frac{E_{\mathrm{CM}}}{2}, p, 0,0\right) \tag{60}\\
& \left(p_{3}\right)_{\mu}=\left(E_{3}, \vec{p}_{3}\right)=\left(\frac{E_{\mathrm{CM}}}{2}, k \cos \theta, k \sin \theta, 0\right) \\
& \left(p_{4}\right)_{\mu}=\left(E_{4}, \vec{p}_{4}\right)=\left(\frac{E_{\mathrm{CM}}}{2},-k \cos \theta,-k \sin \theta, 0\right)
\end{align*}
$$

If all the 4 masses are different $m_{1} \neq m_{2} \neq m_{3} \neq m_{4}$ (all non-zero), then
the following is the most simplification we can achieve,

$$
\begin{align*}
\left(p_{1}\right)_{\mu} & =\left(E_{1}, \vec{p}_{1}\right)=\left(E_{1},\left|\vec{p}_{1}\right|, 0,0\right)=\left(E_{1}, p, 0,0\right) \\
\left(p_{2}\right)_{\mu} & =\left(E_{2}, \vec{p}_{2}\right)=\left(E_{2},\left|\vec{p}_{2}\right|, 0,0\right)=\left(E_{2}, p, 0,0\right) \\
\left(p_{3}\right)_{\mu} & =\left(E_{3}, \vec{p}_{3}\right)=\left(E_{3},\left|\vec{p}_{3}\right| \cos \theta,\left|p_{3}\right| \sin \theta, 0\right)=\left(E_{3}, p \cos \theta, p \sin \theta, 0\right) \\
\left(p_{4}\right)_{\mu} & =\left(E_{4}, \vec{p}_{4}\right)=\left(E_{4},-\left|\vec{p}_{4}\right| \cos \theta,-\left|p_{4}\right| \sin \theta, 0\right) \\
& =\left(E_{4},-k \cos \theta,-k \sin \theta, 0\right) \tag{61}
\end{align*}
$$

If some of the masses are zero, you can start from here and might be able to represent again in terms of E_{CM}.

