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6.2 (Noether’s theorem, symmetries and conserved charges)
Recall the Noether’s theorem, which says that any continuous symmetry of the Lagrangian L (φ, ∂µφ) results in a
conserved current. That is, if the varitation of the field is given by δφ (i.e. φ→ φ+δφ )and the Lagrangian changes
at most by a complete derivative δL = ∂µF

µ, then

∂µj
µ = 0, where

∂L
∂ (∂µφ)

δφ− Fµ

(a) Prove Noether’s theorem

Solution. (A very good look read would be chapter 3 of Schwartz’s textbook)
To derive the Euler-Lagrange equations, we start by varying the action. Similarly, in this case, let us start by

varying the Lagrangian density,

δL =
∂L
∂φ

δφ+
∂L

∂ (∂µφ)
δ (∂µφ)

Use the fact that

δ (∂µφ) = ∂µφ
′ − ∂µφ

= ∂µ (φ+ δφ)− ∂µφ
= ∂µ (δφ)

Using this in δL,
δL =

∂L
∂φ

δφ+
∂L

∂ (∂µφ)
∂µ (δφ)

We can now use the fact that,

∂µ

(
∂L

∂ (∂µφ)
δφ

)
=

∂L
∂ (∂µφ)

∂µ (δφ) + ∂µ

(
∂L

∂ (∂µφ)

)
δφ

→ ∂L
∂ (∂µφ)

∂µ (δφ) = ∂µ

(
∂L

∂ (∂µφ)
δφ

)
− ∂µ

(
∂L

∂ (∂µφ)

)
δφ

Plugging the equation arrowed above into δL,

δL =
∂L
∂φ

δφ− ∂µ
(

∂L
∂ (∂µφ)

)
δφ+ ∂µ

(
∂L

∂ (∂µφ)
δφ

)
≡ ∂µFµ

In the δL we can factorize the δφ in the first two terms and then the terms in the bracket are just the Euler-
Lagrange equations

δL =

(
∂L
∂φ
− ∂µ

(
∂L

∂ (∂µφ)

))
︸ ︷︷ ︸

=0

δφ+ ∂µ

(
∂L

∂ (∂µφ)
δφ

)
≡ ∂µFµ

∂µ

(
∂L

∂ (∂µφ)
δφ− Fµ

)
= 0

where we can define our Noether current as,

jµ =
∂L

∂ (∂µφ)
δφ− Fµ

Conclusion : After assuming our transformation, the Lagrangian stays invariant up-to a total derivative, then
it implies that we have a conserved current given by jµ as in the expression above.

�
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(b) Show that a conserved charge Q =
∫
d3x j0 satisfies ∂tQ = 0.

Solution.
Assuming the result of (a),

∂µj
µ = 0

Contracting the indices with Minkwoski metric (−+ ++)

ηµν∂µjν = 0

−∂0j0 + ∂iji = 0

∂tj0 = ~∇ ·~j∫
V

d3x ∂tj0 =

∫
V

d3x ~∇ ·~j

∂t

∫
V

d3x j0 =

∫
∂V

d~σ ·~j

∂tQ = 0 (Surface terms vanish forV →∞)

�

(c) Show that the symmetry under the infinitesimal translation

xµ → xµ + εµ, φ (x)→ φ (x− ε)

results in 4-conserved currents jµ0 , j
µ
1 , j

µ
2 , j

µ
3 , also known as the energy-momentum tensor Tµν .

Hint: Taylor expand φ (x− ε) and L (x− ε) to find δφ and Fµ.

Solution.
The goal of this problem is to show that, translational symmetry results in 4 conserved currents.
Taylor expand the infinitesimal translations given to us

φ (x− ε) = φ (x− ε)
∣∣
ε=0

+
∂φ (x− ε)

∂εµ
∣∣
ε=0
· εµ

= φ (x) +

[
∂φ (x− ε)
∂ (xν − εν)

∂ (xν − εν)

∂εµ

]
ε=0

· εµ

= φ (x) +

[
∂φ (x)

∂ (xν)

(
−δνµ

)]
ε=0

· εµ

= φ (x)− ∂νφ δνµ εµ

φ (x− ε) = φ (x)− εµ∂µφ
(Comparing with) ≡ φ (x) + δφ

we get,
δφ = −εµ∂µφ

Similarly, for δL
δL = −εm∂µL (x) =! ∂µF

µ

As εµ is just a constant object,

δL = ∂µ (−εµL (x))

⇒ Fµ = −εµL (x)
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Recall the following expression from the previous part

jµ =
∂L

∂ (∂µφ)
δφ− Fµ

=
∂L

∂ (∂µφ)
(−εν∂νφ) + εµL (x)

= − ∂L
∂ (∂µφ)

(εν∂νφ) + εµL (x)

= − ∂L
∂ (∂µφ)

(∂νφ) εν + ηµνενL (x)

Using the fact that aµbµ = aµb
µ,

= − ∂L
∂ (∂µφ)

(∂νφ) εν + ηµνενL (x)

=

[
− ∂L
∂ (∂µφ)

(∂νφ) + ηµνL (x)

]
εν

=

[
− ∂L
∂ (∂µφ)

(∂ρφ) ηρν + ηµνL (x)

]
εν

This shows that we have one current for each direction of εν (because it has 4 components), then we have one
for each direction,

Tµν = − ∂L
∂ (∂µφ)

(∂ρφ) ηρν + ηµνL (x)

Even if we started with one index µ, we end up with 4 different ν for each of them. Also, under the exchange
or µ and ν it is symmetric.Giving us 6 independent components.

�

(d) Show that in the infinitesimal Lorentz transformation Λµν = δµν + ωµν , the infinitesimal parameter is anti-
symmetric, i.e.

ωµν = −ωνµ

Solution.
We have

Λµν = δµν + ωµν = δµν + δΛ

We also know

ηρσ = ΛµρηµνΛνσ

=
(
δµρ + ωµρ

)
ηµν (δνσ + ωνσ)

= δµρ ηµνδ
ν
σ + δµρ ηµνω

ν
σ + ωµρ ηµνδ

ν
σ + ωµρ ηµνω

ν
σ︸ ︷︷ ︸

O(ω2)

= ηρσ + ωσρ + ωρσ

=! ηρσ

The only way that we can replace =! with = is if,

ωσρ = −ωρσ

�

(e) Consider the action of the free classical real scalar field

S =

∫
d4x L =

∫
d4x

(
−1

2
∂µφ (x) ∂µ (x)− 1

2
m2φ (x)φ (x)

)
Find the corresponding energy-momentum tensor to the infinitesimal Lorentz transformation.
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Solution.
We have

L = −1

2
∂µφ (x) ∂µφ (x)− 1

2
m2φ (x)φ (x)

We need to do an infinitesimal Lorentz transformation, which would be xν → xµ

xµ = Λµνx
ν = (δµν + ωµν )xν

with ωµν = −ωνµ

The energy momentum tensor upon Lorentz transformation is

Tµν = − ∂L
∂ (∂µφ)

∂νφ+ ηµνL

In a nutshell, we just have to compute the above expression for the given Lagrangian. With slight change of
notation we can write,

L = −1

2
ηρσ ∂ρφ∂σφ−

1

2
m2φ2

Calculating

∂L
∂ (∂µφ)

= −1

2
ηρσ

(
∂ρφ δ

µ
σ + δµρ ∂σφ

)
= −1

2
∂µφ (x)− 1

2
∂µφ (x)

= −∂µφ (x)

Giving us,

Tµν = +∂µφ (x) ∂νφ (x) + ηµν
(
−1

2
∂µφ (x) ∂µφ (x)− 1

2
m2φ (x)φ (x)

)
writing it in a more convenient way (grouping terms, arranging indices)

Tµν = ∂ρφ (x) ∂σφ (x) ηρµηsν − 1

2
(∂ρφ (x) ∂σφ (x)) ηµνησρ − 1

2
ηµνm2φ2

= ∂ρφ∂σφ

[
ηρµησν − 1

2
ηµνησρ

]
− 1

2
ηµνm2φ2

For this to hold true for Lorentz transformations, L must be invariant up to a total derivative. Even if we have
found an expression for Tµν , it will only be conserved it satisfies invariance upto a total derivative.

δL = L′ − L

the transformation that we want is,

x→ Λx

L → L′ (x) = L
(
Λ−1x

)
= L (δµν x

ν − ωµνxν)

Taylor expand the last parenthesis as a function of ωµν around ωµν = 0,

L
(
Λ−1x

)
' L

(
Λ−1x

)
|ω=0 +

∂L
∂ωµν

|ω=0ω
µ
ν

= L (δµν x
ν − ωµνxν) |ω=0 +

∂L
(
Λ−1x

)
∂ (Λ−1x)

|ω=0

∂
(
Λ−1x

)
∂ωµν

|ω=0ω
µ
ν

= L (xµ) + ∂µ (L (x)) (−xν)ωµν

⇒ δL = −xνωµν ∂µL
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The transformation parameter is a constant so we can pull it inside the ∂µ, also recall that it is antisymmetric

⇒ δL = −xνωµν ∂µL
= −xν∂µ (ωµνL)

= −∂µ (xnωµνL) + ωµν︸︷︷︸
Anti-sym

L ∂µx
ν︸ ︷︷ ︸

Symmetric

Switching the indices for symm+anti symm, we will get a zero from the sum, giving us

δL = −∂µ (xνωµνL)

which is a total derivative.
Using what we found in the start of the problem,

Fµ = −xνωµνL

↓ have to finish
(f) Construct and identify the corresponding Noether charges associated with rotations ωij and boosts ω0i.

Solution.
Recall

Tµν = ∂ρφ∂σφ

[
ηρµησν − 1

2
ηµνησρ

]
− 1

2
ηµνm2φ2

Currents are given by

jµ =
∂L

∂ (∂µφ)
δφ− Fµ

= −∂µφ δφ+ xνωµνL

with δφ = −ωσνxν∂σφ.
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