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6.2 (Noether’s theorem, symmetries and conserved charges)

Recall the Noether’s theorem, which says that any continuous symmetry of the Lagrangian £ (¢, 0,,¢) results in a
conserved current. That is, if the varitation of the field is given by d¢ (i.e. ¢ — ¢+ ¢ )and the Lagrangian changes
at most by a complete derivative £ = 9, F*, then
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(a) Prove Noether’s theorem

Solution. (A very good look read would be chapter 3 of Schwartz’s textbook)
To derive the Euler-Lagrange equations, we start by varying the action. Similarly, in this case, let us start by
varying the Lagrangian density,
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Use the fact that
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We can now use the fact that,
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Plugging the equation arrowed above into §.L,
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In the £ we can factorize the d¢ in the first two terms and then the terms in the bracket are just the Euler-

Lagrange equations
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where we can define our Noether current as,
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Conclusion : After assuming our transformation, the Lagrangian stays invariant up-to a total derivative, then
it implies that we have a conserved current given by j* as in the expression above.
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(b) Show that a conserved charge @ = [ d®z j° satisfies 9,Q = 0.

Solution.
Assuming the result of (a),

Oug* =0
Contracting the indices with Minkwoski metric (— + ++)
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0Q =0 (Surface terms vanish for V. — o0)

(c) Show that the symmetry under the infinitesimal translation

at — xH et d(x) = o(x—e¢)

results in 4-conserved currents j', i1, 75, 74, also known as the energy-momentum tensor T+".
Hint: Taylor expand ¢ (x — ¢) and L (z — ¢) to find d¢ and F*.

Solution.
The goal of this problem is to show that, translational symmetry results in 4 conserved currents.
Taylor expand the infinitesimal translations given to us

=)= o2, + LEZ| e
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¢ (x) — 0,96, et
¢(x—e)=¢(x) —e"0ud
(Comparing with) = ¢ (x) + 0¢

we get,

0¢p = —e"ou¢

Similarly, for §£
6L = —™9,L (x) =" 0,F"

As e* is just a constant object,

0L = 0, (—e"L (x))
= F# = —e/L(x)
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Recall the following expression from the previous part
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This shows that we have one current for each direction of €, (because it has 4 components), then we have one
for each direction,
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Even if we started with one index u, we end up with 4 different v for each of them. Also, under the exchange
or p and v it is symmetric.Giving us 6 independent components.
0

(d) Show that in the infinitesimal Lorentz transformation A¥ = % + w#, the infinitesimal parameter is anti-
symmetric, i.e.

R L a—T

Solution.
We have

AB =68 +wh =68 4+ 6A
We also know
Npo = AZU}LVAZ-

= (55 + w;:) Nuv (05 + we)

= 0 N0y + O Mupwy + WhNuw 0y + wWhnNuwy
—_———

O(w?)
= Npo + Wop + Wpe
:I npo.

The only way that we can replace =' with = is if,

Wop = —Wpo

(e) Consider the action of the free classical real scalar field

5= [aoc= [di (<3000 @) - gm0 o)

Find the corresponding energy-momentum tensor to the infinitesimal Lorentz transformation.
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Solution.
We have

1 1
L= —50,0(2) 90 (2) — ;m* (+) 6 (2)
We need to do an infinitesimal Lorentz transformation, which would be z¥ — x*

= Ay = (68 + wh) ¥

with wh” = —w"#
The energy momentum tensor upon Lorentz transformation is
wo_ oL
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In a nutshell, we just have to compute the above expression for the given Lagrangian. With slight change of
notation we can write,
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Calculating
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Giving us,
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writing it in a more convenient way (grouping terms, arranging indices)
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For this to hold true for Lorentz transformations, £ must be invariant up to a total derivative. Even if we have
found an expression for T#" it will only be conserved it satisfies invariance upto a total derivative.

=L —-L
the transformation that we want is,
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Taylor expand the last parenthesis as a function of w# around w# = 0,
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The transformation parameter is a constant so we can pull it inside the d,,, also recall that it is antisymmetric

= 0L =—2"who,L
= —2"0, (W, L)
= 0, @D+ Wl L D

Anti-sym  Symmetric
Switching the indices for symm-+anti symm, we will get a zero from the sum, giving us
0L = -0, (z"wh L)

which is a total derivative.
Using what we found in the start of the problem,

FH = —g"whL

J have to finish

(f) Construct and identify the corresponding Noether charges associated with rotations w® and boosts w?:.

Solution.
Recall
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Currents are given by
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with ¢ = —w?x,0,¢.



