6.2 (Noether's theorem, symmetries and conserved charges)

Recall the Noether's theorem, which says that any continuous symmetry of the Lagrangian $\mathcal{L}\left(\phi, \partial_{\mu} \phi\right)$ results in a conserved current. That is, if the varitation of the field is given by $\delta \phi$ (i.e. $\phi \rightarrow \phi+\delta \phi$) and the Lagrangian changes at most by a complete derivative $\delta \mathcal{L}=\partial_{\mu} F^{\mu}$, then

$$
\partial_{\mu} j^{\mu}=0, \quad \text { where } \quad \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi-F^{\mu}
$$

(a) Prove Noether's theorem

Solution. (A very good look read would be chapter 3 of Schwartz's textbook)
To derive the Euler-Lagrange equations, we start by varying the action. Similarly, in this case, let us start by varying the Lagrangian density,

$$
\delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta\left(\partial_{\mu} \phi\right)
$$

Use the fact that

$$
\begin{aligned}
\delta\left(\partial_{\mu} \phi\right) & =\partial_{\mu} \phi^{\prime}-\partial_{\mu} \phi \\
& =\partial_{\mu}(\phi+\delta \phi)-\partial_{\mu} \phi \\
& =\partial_{\mu}(\delta \phi)
\end{aligned}
$$

Using this in $\delta \mathcal{L}$,

$$
\delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\mu}(\delta \phi)
$$

We can now use the fact that,

$$
\begin{aligned}
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi\right) & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\mu}(\delta \phi)+\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right) \delta \phi \\
\rightarrow \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\mu}(\delta \phi) & =\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi\right)-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right) \delta \phi
\end{aligned}
$$

Plugging the equation arrowed above into $\delta \mathcal{L}$,

$$
\begin{aligned}
\delta \mathcal{L} & =\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right) \delta \phi+\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi\right) \\
& \equiv \partial_{\mu} F^{\mu}
\end{aligned}
$$

In the $\delta \mathcal{L}$ we can factorize the $\delta \phi$ in the first two terms and then the terms in the bracket are just the EulerLagrange equations

$$
\begin{aligned}
\delta \mathcal{L} & =\underbrace{\left(\frac{\partial \mathcal{L}}{\partial \phi}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right)\right)}_{=0} \delta \phi+\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi\right) \equiv \partial_{\mu} F^{\mu} \\
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi-F^{\mu}\right) & =0
\end{aligned}
$$

where we can define our Noether current as,

$$
j^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi-F^{\mu}
$$

Conclusion : After assuming our transformation, the Lagrangian stays invariant up-to a total derivative, then it implies that we have a conserved current given by j^{μ} as in the expression above.
(b) Show that a conserved charge $Q=\int d^{3} x j^{0}$ satisfies $\partial_{t} Q=0$.

Solution.

Assuming the result of (a),

$$
\partial_{\mu} j^{\mu}=0
$$

Contracting the indices with Minkwoski metric $(-+++)$

$$
\begin{aligned}
\eta^{\mu \nu} \partial_{\mu} j_{\nu} & =0 \\
-\partial_{0} j_{0}+\partial_{i} j_{i} & =0 \\
\partial_{t} j_{0} & =\vec{\nabla} \cdot \vec{j} \\
\int_{V} d^{3} x \partial_{t} j_{0} & =\int_{V} d^{3} x \vec{\nabla} \cdot \vec{j} \\
\partial_{t} \int_{V} d^{3} x j_{0} & =\int_{\partial V} d \vec{\sigma} \cdot \vec{j} \\
\partial_{t} Q & =0 \quad \text { (Surface terms vanish for } V \rightarrow \infty)
\end{aligned}
$$

(c) Show that the symmetry under the infinitesimal translation

$$
x^{\mu} \rightarrow x^{\mu}+\varepsilon^{\mu}, \quad \phi(x) \rightarrow \phi(x-\varepsilon)
$$

results in 4-conserved currents $j_{0}^{\mu}, j_{1}^{\mu}, j_{2}^{\mu}, j_{3}^{\mu}$, also known as the energy-momentum tensor $T^{\mu \nu}$.
Hint: Taylor expand $\phi(x-\varepsilon)$ and $\mathcal{L}(x-\varepsilon)$ to find $\delta \phi$ and F^{μ}.
Solution.
The goal of this problem is to show that, translational symmetry results in 4 conserved currents. Taylor expand the infinitesimal translations given to us

$$
\begin{aligned}
\phi(x-\varepsilon) & =\left.\phi(x-\varepsilon)\right|_{\varepsilon=0}+\left.\frac{\partial \phi(x-\varepsilon)}{\partial \varepsilon^{\mu}}\right|_{\varepsilon=0} \cdot \varepsilon^{\mu} \\
& =\phi(x)+\left[\frac{\partial \phi(x-\varepsilon)}{\partial\left(x^{\nu}-\varepsilon^{\nu}\right)} \frac{\partial\left(x^{\nu}-\varepsilon^{\nu}\right)}{\partial \varepsilon^{\mu}}\right]_{\varepsilon=0} \cdot \varepsilon^{\mu} \\
& =\phi(x)+\left[\frac{\partial \phi(x)}{\partial\left(x^{\nu}\right)}\left(-\delta_{\mu}^{\nu}\right)\right]_{\varepsilon=0} \cdot \varepsilon^{\mu} \\
& =\phi(x)-\partial_{\nu} \phi \delta_{\mu}^{\nu} \varepsilon^{\mu} \\
\phi(x-\varepsilon) & =\phi(x)-\varepsilon^{\mu} \partial_{\mu} \phi
\end{aligned}
$$

(Comparing with) $\equiv \phi(x)+\delta \phi$
we get,

$$
\delta \phi=-\varepsilon^{\mu} \partial_{\mu} \phi
$$

Similarly, for $\delta \mathcal{L}$

$$
\delta \mathcal{L}=-\varepsilon^{m} \partial_{\mu} \mathcal{L}(x)=^{!} \partial_{\mu} F^{\mu}
$$

As ε^{μ} is just a constant object,

$$
\begin{aligned}
\delta \mathcal{L} & =\partial_{\mu}\left(-\varepsilon^{\mu} \mathcal{L}(x)\right) \\
\Rightarrow F^{\mu} & =-\varepsilon^{\mu} \mathcal{L}(x)
\end{aligned}
$$

Recall the following expression from the previous part

$$
\begin{aligned}
j^{\mu} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi-F^{\mu} \\
& =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\left(-\varepsilon^{\nu} \partial_{\nu} \phi\right)+\varepsilon^{\mu} \mathcal{L}(x) \\
& =-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\left(\varepsilon^{\nu} \partial_{\nu} \phi\right)+\varepsilon^{\mu} \mathcal{L}(x) \\
& =-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\left(\partial_{\nu} \phi\right) \varepsilon^{\nu}+\eta^{\mu \nu} \varepsilon_{\nu} \mathcal{L}(x)
\end{aligned}
$$

Using the fact that $a^{\mu} b_{\mu}=a_{\mu} b^{\mu}$,

$$
\begin{aligned}
& =-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\left(\partial^{\nu} \phi\right) \varepsilon_{\nu}+\eta^{\mu \nu} \varepsilon_{\nu} \mathcal{L}(x) \\
& =\left[-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\left(\partial^{\nu} \phi\right)+\eta^{\mu \nu} \mathcal{L}(x)\right] \varepsilon_{\nu} \\
& =\left[-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\left(\partial_{\rho} \phi\right) \eta^{\rho \nu}+\eta^{\mu \nu} \mathcal{L}(x)\right] \varepsilon_{\nu}
\end{aligned}
$$

This shows that we have one current for each direction of ε_{ν} (because it has 4 components), then we have one for each direction,

$$
T^{\mu \nu}=-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\left(\partial_{\rho} \phi\right) \eta^{\rho \nu}+\eta^{\mu \nu} \mathcal{L}(x)
$$

Even if we started with one index μ, we end up with 4 different ν for each of them. Also, under the exchange or μ and ν it is symmetric.Giving us 6 independent components.
(d) Show that in the infinitesimal Lorentz transformation $\Lambda_{\nu}^{\mu}=\delta_{\nu}^{\mu}+\omega_{\nu}^{\mu}$, the infinitesimal parameter is antisymmetric, i.e.

$$
\omega^{\mu \nu}=-\omega^{\nu \mu}
$$

Solution.
We have

$$
\Lambda_{\nu}^{\mu}=\delta_{\nu}^{\mu}+\omega_{\nu}^{\mu}=\delta_{\nu}^{\mu}+\delta \Lambda
$$

We also know

$$
\begin{aligned}
\eta_{\rho \sigma} & =\Lambda_{\rho}^{\mu} \eta_{\mu \nu} \Lambda_{\sigma}^{\nu} \\
& =\left(\delta_{\rho}^{\mu}+\omega_{\rho}^{\mu}\right) \eta_{\mu \nu}\left(\delta_{\sigma}^{\nu}+\omega_{\sigma}^{\nu}\right) \\
& =\delta_{\rho}^{\mu} \eta_{\mu \nu} \delta_{\sigma}^{\nu}+\delta_{\rho}^{\mu} \eta_{\mu \nu} \omega_{\sigma}^{\nu}+\omega_{\rho}^{\mu} \eta_{\mu \nu} \delta_{\sigma}^{\nu}+\underbrace{\omega_{\rho}^{\mu} \eta_{\mu \nu} \omega_{\sigma}^{\nu}}_{\mathcal{O}\left(\omega^{2}\right)} \\
& =\eta_{\rho \sigma}+\omega_{\sigma \rho}+\omega_{\rho \sigma} \\
& =!\eta_{\rho \sigma}
\end{aligned}
$$

The only way that we can replace $=$! with $=$ is if,

$$
\omega_{\sigma \rho}=-\omega_{\rho \sigma}
$$

(e) Consider the action of the free classical real scalar field

$$
S=\int d^{4} x \mathcal{L}=\int d^{4} x\left(-\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu}(x)-\frac{1}{2} m^{2} \phi(x) \phi(x)\right)
$$

Find the corresponding energy-momentum tensor to the infinitesimal Lorentz transformation.

Solution.

We have

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-\frac{1}{2} m^{2} \phi(x) \phi(x)
$$

We need to do an infinitesimal Lorentz transformation, which would be $x^{\nu} \rightarrow x^{\mu}$

$$
x^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu}=\left(\delta_{\nu}^{\mu}+\omega_{\nu}^{\mu}\right) x^{\nu}
$$

$$
\text { with } \quad \omega^{\mu \nu}=-\omega^{\nu \mu}
$$

The energy momentum tensor upon Lorentz transformation is

$$
T^{\mu \nu}=-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial^{\nu} \phi+\eta^{\mu \nu} \mathcal{L}
$$

In a nutshell, we just have to compute the above expression for the given Lagrangian. With slight change of notation we can write,

$$
\mathcal{L}=-\frac{1}{2} \eta^{\rho \sigma} \partial_{\rho} \phi \partial_{\sigma} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

Calculating

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} & =-\frac{1}{2} \eta^{\rho \sigma}\left(\partial_{\rho} \phi \delta_{\sigma}^{\mu}+\delta_{\rho}^{\mu} \partial_{\sigma} \phi\right) \\
& =-\frac{1}{2} \partial^{\mu} \phi(x)-\frac{1}{2} \partial^{\mu} \phi(x) \\
& =-\partial^{\mu} \phi(x)
\end{aligned}
$$

Giving us,

$$
T^{\mu \nu}=+\partial^{\mu} \phi(x) \partial^{\nu} \phi(x)+\eta^{\mu \nu}\left(-\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-\frac{1}{2} m^{2} \phi(x) \phi(x)\right)
$$

writing it in a more convenient way (grouping terms, arranging indices)

$$
\begin{aligned}
T^{\mu \nu} & =\partial_{\rho} \phi(x) \partial_{\sigma} \phi(x) \eta^{\rho \mu} \eta^{s \nu}-\frac{1}{2}\left(\partial_{\rho} \phi(x) \partial_{\sigma} \phi(x)\right) \eta^{\mu \nu} \eta^{\sigma \rho}-\frac{1}{2} \eta^{\mu \nu} m^{2} \phi^{2} \\
& =\partial_{\rho} \phi \partial_{\sigma} \phi\left[\eta^{\rho \mu} \eta^{\sigma \nu}-\frac{1}{2} \eta^{\mu \nu} \eta^{\sigma \rho}\right]-\frac{1}{2} \eta^{\mu \nu} m^{2} \phi^{2}
\end{aligned}
$$

For this to hold true for Lorentz transformations, \mathcal{L} must be invariant up to a total derivative. Even if we have found an expression for $T^{\mu \nu}$, it will only be conserved it satisfies invariance upto a total derivative.

$$
\delta \mathcal{L}=\mathcal{L}^{\prime}-\mathcal{L}
$$

the transformation that we want is,

$$
\begin{aligned}
x & \rightarrow \Lambda x \\
\mathcal{L} \rightarrow \mathcal{L}^{\prime}(x) & =\mathcal{L}\left(\Lambda^{-1} x\right) \\
& =\mathcal{L}\left(\delta_{\nu}^{\mu} x^{\nu}-\omega_{\nu}^{\mu} x^{\nu}\right)
\end{aligned}
$$

Taylor expand the last parenthesis as a function of ω_{ν}^{μ} around $\omega_{\nu}^{\mu}=0$,

$$
\begin{aligned}
\mathcal{L}\left(\Lambda^{-1} x\right) & \left.\simeq \mathcal{L}\left(\Lambda^{-1} x\right)\right|_{\omega=0}+\left.\frac{\partial \mathcal{L}}{\partial \omega^{\mu \nu}}\right|_{\omega=0} \omega_{\nu}^{\mu} \\
& =\left.\mathcal{L}\left(\delta_{\nu}^{\mu} x^{\nu}-\omega_{\nu}^{\mu} x^{\nu}\right)\right|_{\omega=0}+\left.\left.\frac{\partial \mathcal{L}\left(\Lambda^{-1} x\right)}{\partial\left(\Lambda^{-1} x\right)}\right|_{\omega=0} \frac{\partial\left(\Lambda^{-1} x\right)}{\partial \omega_{\nu}^{\mu}}\right|_{\omega=0} \omega_{\nu}^{\mu} \\
& =\mathcal{L}\left(x^{\mu}\right)+\partial_{\mu}(\mathcal{L}(x))\left(-x^{\nu}\right) \omega_{\nu}^{\mu} \\
\Rightarrow \delta \mathcal{L} & =-x^{\nu} \omega_{\nu}^{\mu} \partial_{\mu} \mathcal{L}
\end{aligned}
$$

The transformation parameter is a constant so we can pull it inside the ∂_{μ}, also recall that it is antisymmetric

$$
\begin{aligned}
\Rightarrow \delta \mathcal{L} & =-x^{\nu} \omega_{\nu}^{\mu} \partial_{\mu} \mathcal{L} \\
& =-x^{\nu} \partial_{\mu}\left(\omega_{\nu}^{\mu} \mathcal{L}\right) \\
& =-\partial_{\mu}\left(x^{n} \omega_{\nu}^{\mu} \mathcal{L}\right)+\underbrace{\omega_{\nu}^{\mu}}_{\text {Anti-sym }} \mathcal{L} \underbrace{\partial_{\mu} x^{\nu}}_{\text {Symmetric }}
\end{aligned}
$$

Switching the indices for symm+anti symm, we will get a zero from the sum, giving us

$$
\delta \mathcal{L}=-\partial_{\mu}\left(x^{\nu} \omega_{\nu}^{\mu} \mathcal{L}\right)
$$

which is a total derivative.
Using what we found in the start of the problem,

$$
F^{\mu}=-x^{\nu} \omega_{\nu}^{\mu} \mathcal{L}
$$

\downarrow have to finish
(f) Construct and identify the corresponding Noether charges associated with rotations $\omega^{i j}$ and boosts $\omega^{0 i}$.

Solution.

Recall

$$
T^{\mu \nu}=\partial_{\rho} \phi \partial_{\sigma} \phi\left[\eta^{\rho \mu} \eta^{\sigma \nu}-\frac{1}{2} \eta^{\mu \nu} \eta^{\sigma \rho}\right]-\frac{1}{2} \eta^{\mu \nu} m^{2} \phi^{2}
$$

Currents are given by

$$
\begin{aligned}
j^{\mu} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi-F^{\mu} \\
& =-\partial^{\mu} \phi \delta \phi+x^{\nu} \omega_{\nu}^{\mu} \mathcal{L}
\end{aligned}
$$

with $\delta \phi=-\omega^{\sigma \nu} x_{\nu} \partial_{\sigma} \phi$.

