Problem 10.1 - Yukawa Potential

Consider non-relativistic fermions coupled to a relativistic real scalar field with the following action

$$
S=\int d t d^{3} x\left\{-\bar{\psi}\left(-i \partial_{t}-\frac{\vec{\nabla}^{2}}{2 m}+V_{0}-i \epsilon\right) \psi-\frac{1}{2} \phi\left(\partial_{t}^{2}-\vec{\nabla}^{2}+M^{2}-i \epsilon\right) \phi-g \phi \bar{\psi} \psi\right\}
$$

The partition function can be written as

$$
Z=\int D \bar{\psi} D \psi D \phi \exp \left[-i \frac{1}{2} \int d^{4} x \phi\left(\partial_{t}^{2}-\vec{\nabla}^{2}+M^{2}-i \epsilon\right) \phi+i \int d^{4} x J \phi+i S_{f}[\bar{\psi}, \psi]\right]
$$

where S_{f} is the free fermionic part of the action and

$$
J=-g \bar{\psi} \psi
$$

(a) Perform a Gaussian integration of bosonic fields in the partition function and show that the non-relativistic fermions acquire a non-local interaction term in the effective action

$$
S=\int d t d^{3} x\left\{-\bar{\psi}\left(-i \partial_{t}-\frac{\vec{\nabla}^{2}}{2 m}+V_{0}-i \epsilon\right) \psi\right\}+\frac{g^{2}}{2} \int d^{4} x d^{4} y \bar{\psi}(x) \psi(x) \Delta(x-y) \bar{\psi}(y) \psi(y)
$$

where $\Delta(x-y)$ is the real scalar propagator.
Obtain the explicit expression for the propagator $\Delta(x-y)$.
Hint: Write the free part of the scalar field action as $S_{\phi}=-\frac{1}{2} \int d^{4} x d^{4} y \phi(x) \Delta^{-1}(x-y) \phi(y)$ and recall the Gaussian integration formulae from one of the previous exercise sheets.

Solution.
We want to show that

$$
\int d t d^{3} x\left\{-\frac{1}{2} \phi\left(\partial_{t}^{2}-\vec{\nabla}^{2}+M^{2}-i \epsilon\right) \phi-g \phi \bar{\psi} \psi\right\}=\frac{g^{2}}{2} \int d t d^{3} x\left[d^{4} y \bar{\psi}(x) \psi(x) \Delta(x-y) \bar{\psi}(y) \psi(y)\right]
$$

i.e

We know

$$
\left(\partial_{t}^{2}-\vec{\nabla}^{2}+M^{2}-i \epsilon\right) \Delta(x-y)=\delta(x-y)
$$

Let us use this definition to get the double integral that we want,

$$
\begin{aligned}
\Delta^{-1}(x-y) & =\int d z \delta(z-y) \Delta^{-1}(x-z) \\
& =\int d z\left(\partial_{t}^{2}-\vec{\nabla}^{2}+M^{2}-i \epsilon\right) \Delta(z-y) \Delta^{-1}(x-z) \\
& =\left(\partial_{t}^{2}-\vec{\nabla}^{2}+M^{2}-i \epsilon\right) \delta(x-y)
\end{aligned}
$$

Now,

$$
\begin{align*}
& \Rightarrow-\int_{x} \frac{1}{2} \phi\left(\partial_{t}^{2}-\nabla^{2}+M^{2}-i \varepsilon\right) \phi-g \phi \bar{\psi} \psi \\
& =-\int_{x} \int_{y}\left[\frac{1}{2} \phi(x)\left(\partial_{t}^{2}-\nabla^{2}+M^{2}-i \varepsilon\right) \delta(x-y) \phi(y)-g \phi(x) \delta(x-y) \bar{\psi}(y) \psi(y)\right] \\
& =-\int_{x} \int_{y}\left[\frac{1}{2} \phi(x) \Delta^{-1}(x-y) \phi(y)-g \phi(x) \delta(x-y) \bar{\psi}(y) \psi(y)\right] \tag{1}
\end{align*}
$$

The first term is in the form we would like, now let us manipulate the second term. For this we will use

$$
\delta(x-y)=\int_{z} \Delta^{-1}(x-z) \Delta(z-y)
$$

in

$$
\int_{x} \int_{y} g \phi(x) \delta(x-y) \bar{\psi}(y) \psi(y)
$$

giving us

$$
\Rightarrow \int_{x} \int_{y} \int_{z} g \phi(x) \Delta^{-1}(x-z) \Delta(z-y) \bar{\psi}(y) \psi(y)
$$

Plug this in (1),

$$
\begin{aligned}
& \Rightarrow-\int_{x} \int_{y}\left[\frac{1}{2} \phi(x) \Delta^{-1}(x-y) \phi(y)-g \phi(x) \delta(x-y) \bar{\psi}(y) \psi(y)\right] \\
& =-\int_{x} \int_{y}\left[\frac{1}{2} \phi(x) \Delta^{-1}(x-y) \phi(y)-\int_{z} g \phi(x) \Delta^{-1}(x-z) \Delta(z-y) \bar{\psi}(y) \psi(y)\right]
\end{aligned}
$$

Now switch some of the integration variables to our convenience,

$$
\begin{aligned}
& \Rightarrow-\int_{x} \int_{z}\left(\frac{1}{2} \phi(x) \Delta^{-1}(x-z) \phi(z)\right)-\int_{x} \int_{y} \int_{z} g \phi(x) \Delta^{-1}(x-z) \Delta(z-y) \bar{\psi}(y) \psi(y) \\
& =-\int_{x} \int_{z} \phi(x)\left[\left(\frac{1}{2} \Delta^{-1}(x-z) \phi(z)\right)-\int_{x} \int_{y} \int_{z} g \Delta^{-1}(x-z) \Delta(z-y) \bar{\psi}(y) \psi(y)\right]
\end{aligned}
$$

Completing square is what has to be done after this, this is a little unclear to me as of now, I am going to assume the result is correct and move on to other parts of the problem

Assuming we have proved what we wanted, we now have our total action as

$$
S=\int d t d^{3} x\left\{-\bar{\psi}\left(-i \partial_{t}-\frac{\vec{\nabla}^{2}}{2 m}+V_{0}-i \epsilon\right) \psi\right\}+\frac{g^{2}}{2} \int d^{4} x d^{4} y \bar{\psi}(x) \psi(x) \Delta(x-y) \bar{\psi}(y) \psi(y)
$$

(Here, the interaction term is non-local because, it does not have to be at a singular spacetime point - in that case it would have a delta-function. Instead, it has a propagator which strengthens our argument of non-locality even more)

Now, we still have to find $\Delta(x-y)$, assuming we know $\Delta^{-1}(x-y)$ (Which we do, its the Klein Gordon operator for bosonic fields and the Dirac operator for fermionic fields, in our case it is the Klein-Gordon operator, as we did the previous simplification for the Bosonic fields with the interaction term)

$$
\begin{aligned}
\delta^{4}(x-z) & =\int_{y} \Delta^{-1}(x-y) \Delta(y-z) \\
& =\int_{y} \underbrace{\left(\partial_{t}^{2}-\nabla^{2}+M^{2}-i \varepsilon\right) \delta^{4}(x-y)}_{=\Delta^{-1}} \underbrace{\int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot(y-z)} \Delta(p)}_{\Delta \text { in momentum space }} \\
& =\left(\partial_{t}^{2}-\nabla^{2}+M^{2}-i \varepsilon\right) \int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot(x-z)} \Delta(p) \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}}\left(\partial_{t}^{2}-\nabla^{2}+M^{2}-i \varepsilon\right) e^{i p \cdot(x-z)} \Delta(p) \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot(x-z)}\left(-p_{0}^{2}+\vec{p}^{2}+M^{2}-i \varepsilon\right) \Delta(p)
\end{aligned}
$$

Now, expand the LHS in Fourier space,

$$
\int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot(x-z)}=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot(x-z)}\left(-p_{0}^{2}+\vec{p}^{2}+M^{2}-i \varepsilon\right) \Delta(p)
$$

giving us

$$
\begin{aligned}
\left(-p_{0}^{2}+\vec{p}^{2}+M^{2}-i \varepsilon\right) \Delta(p) & =1 \\
\Delta(p) & =\frac{1}{\left(-p_{0}^{2}+\vec{p}^{2}+M^{2}-i \varepsilon\right)}
\end{aligned}
$$

Finally, we can write this in position space as

$$
\begin{aligned}
\Delta(x-y) & =\int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot(x-y)} \Delta(p) \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot(x-y)} \frac{1}{\left(-p_{0}^{2}+\vec{p}^{2}+M^{2}-i \varepsilon\right)}
\end{aligned}
$$

(b) The new interaction term for fermions is non-local in time due to the fact that the boson was a relativistic one. The potential in this case is a retarded one (like the Lienard-Wiechert potential from classical electromagnetism). However, since we are considering non-relativistic fermions we are interested in the non-relativistic limit of the potential, i.e. instantaneous interactions.
The limit can be performed by restoring the speed of light in our Laplacian

$$
\partial_{t}^{2}-\nabla^{2} \rightarrow \frac{1}{c} \partial_{t}^{2}-\nabla^{2}
$$

and taking $c \rightarrow \infty$, i.e we can neglect the terms associated with the time-derivative.
Show that in this case the propagator,

$$
\Delta(x-y)=\delta\left(x^{0}-y^{0}\right) \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{e^{i \vec{p} \cdot(\vec{x}-\vec{y})}}{\vec{p}^{2}+M^{2}}
$$

becomes local in time and consequently the interaction is local in time.

Solution.

$$
\Delta(x-y)=\underbrace{\int \frac{d p^{0}}{(2 \pi)} e^{i p \cdot\left(x^{0}-y^{0}\right)}}_{=\delta\left(x^{0}-y^{0}\right)} \int \frac{d \vec{p}}{(2 \pi)^{3}} \frac{1}{\left(-p_{0}^{2}+\vec{p}^{2}+M^{2}-i \varepsilon\right)}
$$

Getting rid of the ∂_{t} in the inverse propagator is equivalent to getting rid of the p_{0} term in the propagator, giving us

$$
\Delta(x-y)=\delta\left(x^{0}-y^{0}\right) \int \frac{d \vec{p}}{(2 \pi)^{3}} \frac{1}{\left(\vec{p}^{2}+M^{2}-i \varepsilon\right)}
$$

which is what we wanted to show.
(c) In the instantaneous approximation the effective fermion vertex can be written as

$$
\int d t \int d^{3} x d^{3} y \bar{\psi}(t, \vec{x}) \psi(t, \vec{x}) V_{2}(\vec{x}-\vec{y}) \bar{\psi}(t, \vec{y}) \psi(t, \vec{y})
$$

where we have defined the two body potential as

$$
V_{2}(\vec{r})=\frac{g^{2}}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{(\vec{p})^{2}+M^{2}} e^{i \vec{p} \cdot \vec{r}}
$$

Compute $V_{2}(\vec{r})$.
Solution.

Let us go to spherical coordinates $(|\vec{p}|=p, \theta, \varphi), r=|\vec{r}|$

$$
\begin{aligned}
V_{2}(\vec{r}) & =\frac{g^{2}}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{(\vec{p})^{2}+M^{2}} e^{i \vec{p} \cdot \vec{r}} \\
& =\frac{g^{2}}{2(2 \pi)^{3}} \int_{0}^{\infty} d p \int_{-1}^{1} d \cos \theta \underbrace{\int_{0}^{2 \pi} d \varphi}_{=2 \pi} \frac{p^{2}}{p^{2}+M^{2}} e^{i p r \cos \theta}
\end{aligned}
$$

The extra p^{2} came from the Jacobian,

$$
\begin{aligned}
& =\frac{g^{2}}{2(2 \pi)^{2}} \int_{0}^{\infty} d p \frac{p^{2}}{p^{2}+M^{2}} \int_{-1}^{1} d \cos \theta e^{i p r \cos \theta} \\
& =\frac{g^{2}}{2(2 \pi)^{2}} \int_{0}^{\infty} d p \frac{p^{2}}{p^{2}+M^{2}}\left[\frac{e^{i p r \cos \theta}}{i p r}\right]_{\cos \theta=-1}^{\cos \theta=1} \\
& =\frac{g^{2}}{2(2 \pi)^{2}} \int_{0}^{\infty} d p \frac{p}{p^{2}+M^{2}}\left[\frac{e^{i p r}-e^{-i p r}}{i r}\right] \\
\boldsymbol{\&} & =\frac{g^{2}}{8 \pi^{2} i r}\left[\int_{-\infty}^{0} d p \frac{p}{p^{2}+M^{2}} e^{-i p r}+\int_{0}^{\infty} d p \frac{p^{2}}{p^{2}+M^{2}} e^{i p r}\right] \\
(p \rightarrow-p) & =\frac{g^{2}}{8 \pi^{2} r i} \int_{-\infty}^{\infty} d p \frac{p}{p^{2}+M^{2}} e^{-i p r} \\
\boldsymbol{\oplus} & =\frac{g^{2}}{8 \pi^{2} r i}\left(-i \pi e^{-M r}\right) \\
& =\frac{-g^{2}}{8 \pi} \frac{e^{-M|\vec{r}|}}{|\vec{r}|} \quad \text { (Yukawa potential) }
\end{aligned}
$$

The o in the above calculation is a little unclear to me. As far as I understand from the solution set, $p>0$ needs to be satisfied, so in order to maintain that we do this. The arrives from Cauchy integral. In principle when I attempted the calculation I stopped on the line before $\%$ and just used Mathematica.
(d) What is the V_{2} potential if the boson is massless $M=0$?

Solution.
For the massless case, take the $M \rightarrow 0$ in the Yukawa potential calculated above, giving us,

$$
-\frac{g^{2}}{8 \pi} \frac{1}{|\vec{r}|}
$$

which is the form of a Coulomb potential.

