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Problem 10.1 - Yukawa Potential
Consider non-relativistic fermions coupled to a relativistic real scalar field with the following action
3 " . V2 . 1 2 o2 2 n
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The partition function can be written as
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where Sy is the free fermionic part of the action and

J = —g

(a) Perform a Gaussian integration of bosonic fields in the partition function and show that the non-relativistic
fermions acquire a non-local interaction term in the effective action

=2 2
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where A (z — y) is the real scalar propagator.

Obtain the explicit expression for the propagator A (z — y).

Hint: Write the free part of the scalar field action as Sy = —1 [d*zd*y ¢ (z) A™! (z — y) ¢ (y) and recall the
Gaussian integration formulae from one of the previous exercise sheets.

Solution.
We want to show that

Jatata {36 (0 =907 —ie) 6~ goiu } = & [ drds (a0 0BG - 9 E0)

We know B
(8?—V2+M2—ie>A(x—y)zé(x—y)

Let us use this definition to get the double integral that we want,
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Now,
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The first term is in the form we would like, now let us manipulate the second term. For this we will use

5<x—y>=/A*1<x—z>A<z—y>
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in

//g¢<x>6<x—yw<y>w(y>
giving us
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z

Plug this in (1),
= [ [3e@a7 @-0ow) -0 @it-niw )]

:_/I/ZBMJ;)A1(x—y)¢(y)—/zg¢(x)A1(x—Z)A(z—y)w(y)¢(y)}

Now switch some of the integration variables to our convenience,
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Assuming we have proved what we wanted, we now have our total action as
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(Here, the interaction term is non-local because, it does not have to be at a singular spacetime point - in that
case it would have a delta-function. Instead, it has a propagator which strengthens our argument of non-locality
even more)

Now, we still have to find A (z — y), assuming we know A~! (x — y)(Which we do, its the Klein Gordon operator
for bosonic fields and the Dirac operator for fermionic fields, in our case it is the Klein-Gordon operator, as we did
the previous simplification for the Bosonic fields with the interaction term)

64<x—z>=/A—1<x—y>A<y—z>
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Ain momentum space
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Now, expand the LHS in Fourier space,

d4p ip-(x—z d4p ip-(x—z .
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giving us

(—pg+ 0>+ M? —ic) A(p) =1

Finally, we can write this in position space as

4
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(b) The new interaction term for fermions is non-local in time due to the fact that the boson was a relativistic one.
The potential in this case is a retarded one (like the Lienard-Wiechert potential from classical electromagnetism).
However, since we are considering non-relativistic fermions we are interested in the non-relativistic limit of the
potential, i.e. instantaneous interactions.

The limit can be performed by restoring the speed of light in our Laplacian

1
af—v2—>gaf—v2

and taking ¢ — oo, i.e we can neglect the terms associated with the time-derivative.
Show that in this case the propagator,

Bp P @)
— — 0 — 0 -
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becomes local in time and consequently the interaction is local in time.

Solution.

. ‘dpo ip- o_yo dﬁ 1
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=6(z0—y°)

Getting rid of the J; in the inverse propagator is equivalent to getting rid of the py term in the propagator,
giving us
dp 1
Alx—y)=96 xo—yo/ -
(=) =5 ( ) (2m)® (P + M? — ig)

which is what we wanted to show.

(c) In the instantaneous approximation the effective fermion vertex can be written as

/dt/d% &y G (6, 7) 0 (4, 7) Va (F— §) & (4, 5) ¢ (&, §)

where we have defined the two body potential as

Compute V3 (7).

Solution.
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Let us go to spherical coordinates (|p] = p, 6, ), r = |7
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The extra p? came from the Jacobian,
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(d) What is the V5 potential if the boson is massless M = 07

Solution.
For the massless case, take the M — 0 in the Yukawa potential calculated above, giving us,

g° 1
8 |71

which is the form of a Coulomb potential.



