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Problem 10.1 - Yukawa Potential
Consider non-relativistic fermions coupled to a relativistic real scalar field with the following action

S =

∫
dtd3x

{
−ψ̄

(
−i∂t −

~∇2

2m
+ V0 − iε

)
ψ − 1

2
φ
(
∂2
t − ~∇2 +M2 − iε

)
φ− gφψ̄ψ

}
The partition function can be written as

Z =

∫
Dψ̄DψDφ exp

[
−i1

2

∫
d4xφ

(
∂2
t − ~∇2 +M2 − iε

)
φ+ i

∫
d4xJφ+ iSf [ψ̄, ψ]

]
where Sf is the free fermionic part of the action and

J = −gψ̄ψ

(a) Perform a Gaussian integration of bosonic fields in the partition function and show that the non-relativistic
fermions acquire a non-local interaction term in the effective action

S =

∫
dtd3x

{
−ψ̄

(
−i∂t −

~∇2

2m
+ V0 − iε

)
ψ

}
+
g2

2

∫
d4xd4yψ̄(x)ψ(x)∆(x− y)ψ̄(y)ψ(y)

where ∆ (x− y) is the real scalar propagator.
Obtain the explicit expression for the propagator ∆ (x− y).
Hint: Write the free part of the scalar field action as Sφ = − 1

2

∫
d4x d4y φ (x) ∆−1 (x− y)φ (y) and recall the

Gaussian integration formulae from one of the previous exercise sheets.

Solution.
We want to show that∫

dtd3x

{
−1

2
φ
(
∂2
t − ~∇2 +M2 − iε

)
φ− gφψ̄ψ

}
=
g2

2

∫
dtd3x

[
d4yψ̄(x)ψ(x)∆(x− y)ψ̄(y)ψ(y)

]
i.e

We know (
∂2
t − ~∇2 +M2 − iε

)
∆ (x− y) = δ (x− y)

Let us use this definition to get the double integral that we want,

∆−1 (x− y) =

∫
dz δ (z − y) ∆−1 (x− z)

=

∫
dz
(
∂2
t − ~∇2 +M2 − iε

)
∆ (z − y) ∆−1 (x− z)

=
(
∂2
t − ~∇2 +M2 − iε

)
δ (x− y)

Now,

⇒−
∫
x

1

2
φ
(
∂2
t −∇2 +M2 − iε

)
φ− gφψ̄ψ

=−
∫
x

∫
y

[
1

2
φ (x)

(
∂2
t −∇2 +M2 − iε

)
δ (x− y)φ (y)− gφ (x) δ (x− y) ψ̄ (y)ψ (y)

]
=−

∫
x

∫
y

[
1

2
φ (x) ∆−1 (x− y)φ (y)− gφ (x) δ (x− y) ψ̄ (y)ψ (y)

]
(1)

The first term is in the form we would like, now let us manipulate the second term. For this we will use

δ (x− y) =

∫
z

∆−1 (x− z) ∆ (z − y)

1
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in ∫
x

∫
y

gφ (x) δ (x− y) ψ̄ (y)ψ (y)

giving us

⇒
∫
x

∫
y

∫
z

gφ (x) ∆−1 (x− z) ∆ (z − y) ψ̄ (y)ψ (y)

Plug this in (1),

⇒−
∫
x

∫
y

[
1

2
φ (x) ∆−1 (x− y)φ (y)− gφ (x) δ (x− y) ψ̄ (y)ψ (y)

]
=−

∫
x

∫
y

[
1

2
φ (x) ∆−1 (x− y)φ (y)−

∫
z

gφ (x) ∆−1 (x− z) ∆ (z − y) ψ̄ (y)ψ (y)

]
Now switch some of the integration variables to our convenience,

⇒−
∫
x

∫
z

(
1

2
φ (x) ∆−1 (x− z)φ (z)

)
−
∫
x

∫
y

∫
z

gφ (x) ∆−1 (x− z) ∆ (z − y) ψ̄ (y)ψ (y)

=−
∫
x

∫
z

φ (x)

[(
1

2
∆−1 (x− z)φ (z)

)
−
∫
x

∫
y

∫
z

g∆−1 (x− z) ∆ (z − y) ψ̄ (y)ψ (y)

]
Completing square is what has to be done after this, this is a little unclear to me as of now, I am going to

assume the result is correct and move on to other parts of the problem

Assuming we have proved what we wanted, we now have our total action as

S =

∫
dtd3x

{
−ψ̄

(
−i∂t −

~∇2

2m
+ V0 − iε

)
ψ

}
+
g2

2

∫
d4xd4yψ̄(x)ψ(x)∆(x− y)ψ̄(y)ψ(y)

(Here, the interaction term is non-local because, it does not have to be at a singular spacetime point - in that
case it would have a delta-function. Instead, it has a propagator which strengthens our argument of non-locality
even more)

Now, we still have to find ∆ (x− y), assuming we know ∆−1 (x− y)(Which we do, its the Klein Gordon operator
for bosonic fields and the Dirac operator for fermionic fields, in our case it is the Klein-Gordon operator, as we did
the previous simplification for the Bosonic fields with the interaction term)

δ4 (x− z) =

∫
y

∆−1 (x− y) ∆ (y − z)

=

∫
y

(
∂2
t −∇2 +M2 − iε

)
δ4 (x− y)︸ ︷︷ ︸

=∆−1

∫
d4p

(2π)
4 e

ip·(y−z)∆ (p)︸ ︷︷ ︸
∆in momentum space

=
(
∂2
t −∇2 +M2 − iε

) ∫ d4p

(2π)
4 e

ip·(x−z)∆ (p)

=

∫
d4p

(2π)
4

(
∂2
t −∇2 +M2 − iε

)
eip·(x−z)∆ (p)

=

∫
d4p

(2π)
4 e
ip·(x−z) (−p2

0 + ~p2 +M2 − iε
)

∆ (p)

Now, expand the LHS in Fourier space,∫
d4p

(2π)
4 e
ip·(x−z) =

∫
d4p

(2π)
4 e
ip·(x−z) (−p2

0 + ~p2 +M2 − iε
)

∆ (p)
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giving us (
−p2

0 + ~p2 +M2 − iε
)

∆ (p) = 1

∆ (p) =
1

(−p2
0 + ~p2 +M2 − iε)

Finally, we can write this in position space as

∆ (x− y) =

∫
d4p

(2π)
4 e
ip·(x−y) ∆ (p)

=

∫
d4p

(2π)
4 e
ip·(x−y) 1

(−p2
0 + ~p2 +M2 − iε)

(b) The new interaction term for fermions is non-local in time due to the fact that the boson was a relativistic one.
The potential in this case is a retarded one (like the Lienard-Wiechert potential from classical electromagnetism).
However, since we are considering non-relativistic fermions we are interested in the non-relativistic limit of the
potential, i.e. instantaneous interactions.
The limit can be performed by restoring the speed of light in our Laplacian

∂2
t −∇2 → 1

c
∂2
t −∇2

and taking c→∞, i.e we can neglect the terms associated with the time-derivative.
Show that in this case the propagator,

∆ (x− y) = δ
(
x0 − y0

) ∫ d3p

(2π)
3

ei~p·(~x−~y)

~p2 +M2

becomes local in time and consequently the interaction is local in time.

Solution.

∆ (x− y) =

∫
dp0

(2π)
eip·(x

0−y0)︸ ︷︷ ︸
=δ(x0−y0)

∫
d~p

(2π)
3

1

(−p2
0 + ~p2 +M2 − iε)

Getting rid of the ∂t in the inverse propagator is equivalent to getting rid of the p0 term in the propagator,
giving us

∆ (x− y) = δ
(
x0 − y0

) ∫ d~p

(2π)
3

1

(~p2 +M2 − iε)

which is what we wanted to show.

(c) In the instantaneous approximation the effective fermion vertex can be written as∫
dt

∫
d3x d3y ψ̄ (t, ~x)ψ (t, ~x)V2 (~x− ~y) ψ̄ (t, ~y)ψ (t, ~y)

where we have defined the two body potential as

V2 (~r) =
g2

2

∫
d3p

(2π)
3

1

(~p)
2

+M2
ei~p·~r

Compute V2 (~r).

Solution.
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Let us go to spherical coordinates (|~p| = p, θ, ϕ), r = |~r|

V2 (~r) =
g2

2

∫
d3p

(2π)
3

1

(~p)
2

+M2
ei~p·~r

=
g2

2 (2π)
3

∫ ∞
0

dp

∫ 1

−1

d cos θ

∫ 2π

0

dϕ︸ ︷︷ ︸
=2π

p2

p2 +M2
eip r cos θ

The extra p2 came from the Jacobian,

=
g2

2 (2π)
2

∫ ∞
0

dp
p2

p2 +M2

∫ 1

−1

d cos θ eip r cos θ

=
g2

2 (2π)
2

∫ ∞
0

dp
p2

p2 +M2

[
eip r cos θ

ipr

]cos θ=1

cos θ=−1

=
g2

2 (2π)
2

∫ ∞
0

dp
p

p2 +M2

[
eip r − e−ip r

ir

]
♣ =

g2

8π2ir

[∫ 0

−∞
dp

p

p2 +M2
e−ipr +

∫ ∞
0

dp
p2

p2 +M2
eipr

]
(p→ −p) =

g2

8π2ri

∫ ∞
−∞

dp
p

p2 +M2
e−ipr

♠ =
g2

8π2ri

(
−iπe−Mr

)
=
−g2

8π

e−M |~r|

|~r|
(Yukawa potential)

The ♣ in the above calculation is a little unclear to me. As far as I understand from the solution set, p > 0
needs to be satisfied, so in order to maintain that we do this. The ♠ arrives from Cauchy integral. In principle
when I attempted the calculation I stopped on the line before ♣ and just used Mathematica.

(d) What is the V2 potential if the boson is massless M = 0?

Solution.
For the massless case, take the M → 0 in the Yukawa potential calculated above, giving us,

− g
2

8π

1

|~r|

which is the form of a Coulomb potential.
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